4 research outputs found

    Nanofibrous Scaffolds as Promising Cell Carriers for Tissue Engineering

    Get PDF
    Nanofibers are promising cell carriers for tissue engineering of a variety of tissues and organs in the human organism. They have been experimentally used for reconstruction of tissues of cardiovascular, respiratory, digestive, urinary, nervous and musculoskeletal systems. Nanofibers are also promising for drug and gene delivery, construction of biosensors and biostimulators, and wound dressings. Nanofibers can be created from a wide range of natural polymers or synthetic biostable and biodegradable polymers. For hard tissue engineering, polymeric nanofibers can be reinforced with various ceramic, metal-based or carbon-based nanoparticles, or created directly from hard materials. The nanofibrous scaffolds can be loaded with various bioactive molecules, such as growth, differentiation and angiogenic factors, or funcionalized with ligands for the cell adhesion receptors. This review also includes our experience in skin tissue engineering using nanofibers fabricated from polycaprolactone and its copolymer with polylactide, cellulose acetate, and particularly from polylactide nanofibers modified by plasma activation and fibrin coating. In addition, we studied the interaction of human bone-derived cells with nanofibrous scaffolds loaded with hydroxyapatite or diamond nanoparticles. We also created novel nanofibers based on diamond deposition on a SiO2 template, and tested their effects on the adhesion, viability and growth of human vascular endothelial cells

    Novel multicomponent organic-inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering

    Get PDF
    The present work focuses on the development of novel multicomponent organic‐inorganic hydrogel composites for bone tissue engineering. For the first time, combination of the organic components commonly used in food industry, namely whey protein isolate (WPI) and gelatin from bovine skin, as well as inorganic material commonly used as a major component of hydraulic bone cements, namely α‐TCP in various concentrations (0‐70 wt.%) was proposed. The results showed that α‐TCP underwent incomplete transformation to calcium‐deficient hydroxyapatite (CDHA) during preparation process of the hydrogels. Microcomputer tomography showed inhomogeneous distribution of the calcium phosphate (CaP) phase in the resulting composites. Nevertheless, hydrogels containing 30‐70 wt.% α‐TCP showed significantly improved mechanical properties. The values of Young's modulus and the stresses corresponding to compression of a sample by 50% increased almost linearly with increasing concentration of ceramic phase. Incomplete transformation of α‐TCP to CDHA during preparation process of composites provides them high reactivity in simulated body fluid during 14‐day incubation. Preliminary in vitro studies revealed that the WPI/gelatin/CaP composite hydrogels support the adhesion, spreading, and proliferation of human osteoblast‐like MG‐63 cells. The WPI/gelatin/CaP composite hydrogels obtained in this work showed great potential for the use in bone tissue engineering and regenerative medicine applications

    Modification of heat-induced whey protein isolate hydrogel with highly bioactive glass particles results in promising biomaterial for bone tissue engineering

    Get PDF
    This study deals with the design and comprehensive evaluation of novel hydrogels based on whey protein isolate (WPI) for tissue regeneration. So far, WPI has been considered mainly as a food industry by-product and there are very few reports on the application of WPI in tissue engineering (TE). In this work, WPI-based hydrogels were modified with bioactive glass (BG), which is commonly used as a bone substitute material. Ready-to-use, sterile hydrogels were produced by a simple technique, namely heat-induced gelation. Two different concentrations (10 and 20% w/w) of sol–gel-derived BG particles of two different sizes (2.5 and <45 ”m) were compared. ”CT analysis showed that hydrogels were highly porous with almost 100% pore interconnectivity. BG particles were generally homogenously distributed in the hydrogel matrix, affecting pore size, and reducing material porosity. Thermal analysis showed that the presence of BG particles in WPI matrix reduced water content in hydrogels and improved their thermal stability. BG particles decreased enzymatic degradation of the materials. The materials underwent mineralization in simulated biological fluids (PBS and SBF) and possessed high radical scavenging capacity. In vitro tests indicated that hydrogels were cytocompatible and supported MG-63 osteoblastic cell functions

    Electron Beam-Treated Enzymatically Mineralized Gelatin Hydrogels for Bone Tissue Engineering

    No full text
    Biological hydrogels are highly promising materials for bone tissue engineering (BTE) due to their high biocompatibility and biomimetic characteristics. However, for advanced and customized BTE, precise tools for material stabilization and tuning material properties are desired while optimal mineralisation must be ensured. Therefore, reagent-free crosslinking techniques such as high energy electron beam treatment promise effective material modifications without formation of cytotoxic by-products. In the case of the hydrogel gelatin, electron beam crosslinking further induces thermal stability enabling biomedical application at physiological temperatures. In the case of enzymatic mineralisation, induced by Alkaline Phosphatase (ALP) and mediated by Calcium Glycerophosphate (CaGP), it is necessary to investigate if electron beam treatment before mineralisation has an influence on the enzymatic activity and thus affects the mineralisation process. The presented study investigates electron beam-treated gelatin hydrogels with previously incorporated ALP and successive mineralisation via incubation in a medium containing CaGP. It could be shown that electron beam treatment optimally maintains enzymatic activity of ALP which allows mineralisation. Furthermore, the precise tuning of material properties such as increasing compressive modulus is possible. This study characterizes the mineralised hydrogels in terms of mineral formation and demonstrates the formation of CaP in dependence of ALP concentration and electron dose. Furthermore, investigations of uniaxial compression stability indicate increased compression moduli for mineralised electron beam-treated gelatin hydrogels. In summary, electron beam-treated mineralized gelatin hydrogels reveal good cytocompatibility for MG-63 osteoblast like cells indicating a high potential for BTE applications
    corecore