10 research outputs found

    Machine Learning-Based Event Generator for Electron-Proton Scattering

    Get PDF
    We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level event distributions needed to reconstruct physical observables

    AI-based Monte Carlo event generator for electron-proton scattering

    Get PDF
    We present a new strategy using artificial intelligence (AI) to build the first AI-based Monte Carlo event generator (MCEG) capable of faithfully generating final state particle phase space in lepton-hadron scattering. We show a blueprint for integrating machine learning strategies with calibrated detector simulations to build a vertex-level, AI-based MCEG, free of theoretical assumptions about femtometer scale physics. As the first steps towards this goal, we present a case study for inclusive electron-proton scattering using synthetic data from the PYTHIA MCEG for testing and validation purposes. Our quantitative results validate our proof of concept and demonstrate the predictive power of the trained models. The work suggests new venues for data preservation to enable future QCD studies of hadrons structure, and the developed technology can boost the science output of physics programs at facilities such as Jefferson Lab and the future Electron-Ion Collider.Comment: 4 pages, 4 figures. arXiv admin note: text overlap with arXiv:2001.1110

    Evolution of the nuclear spin-orbit splitting explored via the <sup>32</sup>Si<i>(d,p)</i><sup>33</sup>Si reaction using SOLARIS

    Get PDF
    The spin-orbit splitting between neutron 1p orbitals at 33Si has been deduced using the single-neutron-adding (d,p) reaction in inverse kinematics with a beam of 32Si, a long-lived radioisotope. Reaction products were analyzed by the newly implemented SOLARIS spectrometer at the reaccelerated-beam facility at the National Superconducting Cyclotron Laboratory. The measurements show reasonable agreement with shell-model calculations that incorporate modern cross-shell interactions, but they contradict the prediction of proton density depletion based on relativistic mean-field theory. The evolution of the neutron 1p-shell orbitals is systematically studied using the present and existing data in the isotonic chains of = 17, 19, and 21. In each case, a smooth decrease in the separation of the - orbitals is seen as the respective p-orbitals approach zero binding, suggesting that the finite nuclear potential strongly influences the evolution of nuclear structure in this region

    Observation of Three-Neutron Sequential Emission from <sup>25</sup>O

    No full text
    Background: Measurements of neutron-unbound states can test nuclear models in very neutron-rich nuclei that in some cases cannot be probed with other methods. Purpose: Search for highly excited neutron-unbound states of 25O above the three neutron separation energy. Method: The decay energy of 25O was reconstructed using the invariant mass spectroscopy method. A 101.3 MeV/u 27Ne beam collided with a liquid deuterium target. Two-proton removal reactions populated excited 25O that decayed into three neutrons and an 22O fragment. The neutrons were detected by arrays of plastic scintillator bars, while a 4 Tm dipole magnet placed directly after the target redirected charged fragments to a series of charged-particle detectors. The data were compared with detailed Monte Carlo simulations of the reaction process and subsequent decay. Results: The data show evidence of neutron-unbound level(s) in 25O at an excitation energy of about 9 MeV which decay sequentially by the emission of three neutrons to 22O. Conclusion: The observation of resonance strength in 25O at about 9 MeV is consistent with shell-model/eikonal calculations for the two-proton removal reaction from 27Ne.</p

    Neutron-unbound states in 31Ne

    No full text
    Background: The Island of Inversion near the N = 20 shell gap is home to nuclei with reordered single-particle energy levels compared to the spherical shell model. Studies of 31 Ne have revealed that its ground state has a halo component, characterized by a valence neutron orbiting a deformed 30 Ne core. This lightly-bound nucleus with a separation energy of only Sn = 170 keV is expected to have excited states that are neutron unbound. Purpose: The purpose of this experiment was to investigate the low-lying excited states in 31 Ne that decay by the emission of a single neutron. Methods: An 89 MeV/nucleon 33 Mg beam impinged on a segmented Be reaction target. Neutron-unbound states in 31 Ne were populated via a two-proton knockout reaction. The 30 Ne fragment and associated neutron from the decay of 31 Ne were detected by the MoNA-LISA-Sweeper experimental setup at the National Superconducting Cyclotron Laboratory. Invariant mass spec-troscopy was used to reconstruct the two-body decay energy (30 Ne + n). Results: The two-body decay energy spectrum exhibits two features: a low-lying peak at 0.30 ± 0.17 MeV and a broad enhancement at 1.50 ± 0.33 MeV, each fit with an energy-dependent asymmetric Breit-Wigner line shape representing a resonance in the continuum. Accompanying shell model calculations using the FSU interaction within NuShellX, combined with cross-section calculations using the eikonal reaction theory, indicate that these peaks in the decay energy spectrum are caused by multiple resonant states in 31 Ne. Conclusions: Excited states in 31 Ne were observed for the first time. Transitions from calculated shell model final states in 31 Ne to bound states in 30 Ne are in good agreement with the measured decay energy spectrum. Cross-section calculations for the two-proton knockout populating 31 Ne states as well as spectroscopic factors pertaining to the decay of 31 Ne into 30 Ne are used to examine the results within the context of the shell model expectations

    Mirror nucleon removal reactions in pp-shell nuclei

    No full text
    International audienceNucleon removal reactions have been shown to be an effective tool for studying the single particle structure of nuclei. This work continues efforts to experimentally probe and benchmark the reaction and structure models used to calculate the removal reaction cross sections when using microscopic nuclear structure inputs. Three different single nucleon removal reactions were performed, from p-shell nuclei with masses A = 7, 9, and 10.The residual nuclei from the reactions were detected in coincidence with Îł rays to determine partial cross sections to individual final states. The eikonal direct-reaction model is combined with overlap functions and residual nucleus densities from microscopic, variational Monte Carlo calculations to provide consistent nuclear structure input to the partial cross section calculations. Comparisons of measured and calculated cross sections, including for mirror reactions, are presented. The analysis of the partial cross sections leading to the ground states shows a similar behavior to the one observed from analyses of inclusive cross sections using shell model nuclear structure input: the theoretical description of the removal process is in better agreement with the data when removing weakly bound nucleons, than when removing well-bound ones. The two mirror reaction pairs presented here show consistent results between the respective members of the pairs. The results obtained for the population of the excited states, however, show a systematically different trend that appears connected to the structure part of the calculation. Additional cases are needed to better understand the respective roles of structureand dynamical effects in the deviations

    Covalent binding on the femtometer scale Nuclear molecules

    No full text

    Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

    No full text
    corecore