32 research outputs found

    Characterization and Conduction Mechanism of Highly Conductive Vanadate Glass

    Get PDF
    This paper reviews recent studies of highly conductive barium iron vanadate glass with a composition of 20 BaO ∙ 10 Fe2O3 ∙ 70 V2O5 (in mol %). Isothermal annealing of the vanadate glass for several ten minutes at a given temperature, higher than glass transition temperature or crystallization temperature, caused an increase in σ. Substitution of CuI (3d10), ZnII (3d10) and CuII (3d9) for FeIII (3d5) was investigated to elucidate the effect of electron configuration on the conductivity (σ). A marked decrease in the activation energy of conduction (Ea) was also observed after the annealing. Values of Ea were correlated to the energy gap between the donor level and the conduction band (CB) in the n-type semiconductor model. Isothermal annealing of ZnII-substituted vanadate glass (20 BaO ∙ 5 ZnO ∙ 5 Fe2O3 ∙ 70 V2O5) at 450 °C for 30 min showed an increase in σ from 2.5 × 10–6 to 2.1 × 10–1 S cm–1, which was one order of magnitude larger than that of non-substituted vanadate glass (3.4 × 10–2 S cm–1). Under the same annealing condition, σ’s of 2.0 × 10–1 and 3.2 × 10–1 S cm–1 were observed for 20 BaO ∙ 5 Cu2O ∙ 5 Fe2O3 ∙ 70 V2O5 and 20 BaO ∙ 5 CuO ∙ 5 Fe2O3 ∙ 70 V2O5 glasses, respectively. These results demonstrate an increase in the carrier (electron) density in the CB, primarily composed of anti-bonding 4s-orbitals

    PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants

    Get PDF
    Designing semiconductor catalysts with superior charge carrier transfer and adequately exposed reactive sites is crucial for acquiring remarkable photocatalytic activity. Herein, a series of BiOBr catalysts with PVP as “organic armor” were synthesized via a facile precipitation strategy. As expected, the BiOBr-PVP hybrids exhibited superior catalytic oxidation toward the removal of organic dyes and tetracycline, but also catalytic reduction of Cr (VI). By virtue of tunable bandgap structure, sufficient abundance of reactive sites and decreased work function, the BiOBr-PVP composites could effectively expedite the charge carrier separation and transfer via enhanced transport pathways. Simultaneously, the reduced particle size and enlarged specific surface area achieved by loading PVP on the BiOBr catalyst could provide greater contact area and channels for intimate interaction between reactive sites and pollutants. Moreover, a photodegradation pathway for tetracycline was proposed based on LC-MS measurements and the intrinsic mechanism between BiOBr and PVP was discussed by first-principles calculation. The constructed BiOBr-PVP composites extend the scope and comprehension of photocatalysts via surface structural engineering and sufficient interfacial coupling for use in several environmental purification applications

    Electrical Transport in Iron Phosphate-Based Glass-(Ceramics): Insights into the Role of B2O3 and HfO2 from Model-Free Scaling Procedures

    Get PDF
    In this work, we report the effect of the addition of modifiers and network formers on the polaronic transport in iron phosphate glasses (IPG) in two systems of HfO2–B2O3–Fe2O3–P2O5, to which up to 8 mol% boron and hafnium are added. The addition of oxides significantly changes the Fe2+/Fetotal ratio, thus directly affecting the polaron number density and consequently controlling DC conductivity trends for both series studied by impedance spectroscopy. Moreover, we found that short-range polaron dynamics are also under the influence of structural changes. Therefore, we have studied them in detail using model-free scaling procedures, Summerfield and Sidebottom scaling. An attempt to construct a super-master curve revealed that in addition to change in polaron number density, also the polaron hopping lengths change, and Sidebottom scaling yields a super-master curve. The spatial extent of the localized motion of polarons is correlated with polaron number density and two distinct regions are observed. A strong increase in the spatial extent of the polaron hopping jump could be related either to the structural changes due to the addition of HfO2 and B2O3 and their effects on the formation of polarons or to an inherent property of polaron transport in IP glasses with low polaron number density

    Mössbauer study of some novel iron-bis-glyoxime and iron-tris-glyoxime complexes

    Get PDF
    Dioximes as ligands are used as analytical reagents and serve as models for biological systems as well as catalysts in chemical processes. A number of novel mixed complexes of the type [Fe(DioxH)2(amine)2] have been prepared and characterised by FTIR, 57Fe Mössbauer and mass spectroscopy by us. We have found strong Fe–N donor acceptor interactions and iron occurred in low-spin FeII state in all complexes. Later, we have also found that the incorporation of branching alkyl chains (isopropyl) in the complexes alters the Fe–N bond length and results in high-spin iron(II) state [1, 2]. The question arises: can the spin state of iron be manipulated generally by replacing the short alkyl chains with high volume demand ones in Fe-azomethine-amine complexes? To answer the question we have synthetized novel iron-bis-glioxime and iron-tris-gloxime complexes when long chain alkyl or aromatic ligands replaced the short alkyl ones and studied by 57Fe Mössbauer spectroscopy, MS, FTIR, UV-VIS, TG-DTA-DTG and XRD methods. Novel iron-bis-glyoxime and iron-tris-glyoxime type complexes, [Fe(Diethyl-Diox)3(BOH)2], [Fe(Diethyl-Diox)3(BOEt)2] and [Fe(phenyl-Me-Diox)3(BOEt)2], were synthesized similarly as described in [2]. The FTIR, UV-VIS, TG-DTA-DTG and MS measurements indicated that the expected novel complexes could be successfully synthesized

    Structural, electrical and photocatalytic properties of iron-containing soda-lime aluminosilicate glass and glass-ceramics

    Get PDF
    The structure and electrical conductivity of iron-containing soda-lime alumino-silicate glass-ceramic system were investigated and used for the degradation of methylene blue (MB) solution. Mössbauer isomer shifts were decreased from 0.26 and 0.25 to 0.14 and 0.12 mm s-1 with increasing basicity from 0.75 to 1.50 revealing the cleavage in network structure due to the incorporation of Ca2+ ions. By increasing basicity from 0.75 to 1.50, the electrical conductivity was increased from (2.2 × 10-12 to 2.2 × 10-8 Ω -1 cm-1 ). More increase in basicity to 1.75 decreased the conductivity to 6.5× 10-9 Ω -1 cm-1 . The electrical conductivity is ionic in nature and was correlated to the microstructure of the samples. The first-order rate constant (k) for the MB degradation was enhanced from 0.09 × 10-1 to 1.15 × 10−1 min−1 with increasing basicity from 0.75 to 1.50, having a good correlation with microstructure and electrical conductivity

    Photo-Fenton degradation of methylene blue using hematite-enriched slag under visible light

    Get PDF
    This study aims to find a suitable method to transform the amorphous iron oxides obtained from the incineration of combustible waste slag into hematite. The resulting samples were utilized as heterogeneous photocatalysts for the photo-Fenton degradation of methylene blue (MB) aqueous solution. A good correlation was found between the MB degradation and the amount of hematite phase as confirmed by XRD and Mössbauer measurements. The largest rate constant (k) was (4.1 ± 0.08) × 10−2 min−1 for MB decomposition under visible-light for the sample N5-50-800. The results are promising for both low-cost photocatalysts and recycling of combustible waste slags

    The relationship between local structure and photo-Fenton catalytic ability of glasses and glass-ceramics prepared from Japanese slag

    Get PDF
    Local structure and the photo-Fenton reactivity of iron-containing glasses and glass-ceramics prepared from Japanese domestic waste slag were investigated. The largest rate constant (k) of (2.8 ± 0.08) × 10−2 min−1 was recorded for the methylene blue degradation test by using H2O2 with a heat-treated ‘model slag’. The 57Fe Mössbauer spectrum was composed of a paramagnetic doublet with isomer shift of 0.18 ± 0.01 mm s−1 attributed to distorted FeIIIO4 tetrahedra. These results indicate that the paramagnetic Fe3+ provided strong photo-Fenton catalytic ability, and that waste slag can thus be recycled as an effective visible-light activated photocatalyst

    A Unique Mechanochemical Redox Reaction Yielding Nanostructured Double Perovskite Sr2_{2}FeMoO6_{6} With an Extraordinarily High Degree of Anti-Site Disorder

    Get PDF
    Strontium ferromolybdate, Sr(2)FeMoO(6), is an important member of the family of double perovskites with the possible technological applications in the field of spintronics and solid oxide fuel cells. Its preparation via a multi-step ceramic route or various wet chemistry-based routes is notoriously difficult. The present work demonstrates that Sr(2)FeMoO(6) can be mechanosynthesized at ambient temperature in air directly from its precursors (SrO, α-Fe, MoO(3)) in the form of nanostructured powders, without the need for solvents and/or calcination under controlled oxygen fugacity. The mechanically induced evolution of the Sr(2)FeMoO(6) phase and the far-from-equilibrium structural state of the reaction product are systematically monitored with XRD and a variety of spectroscopic techniques including Raman spectroscopy, (57)Fe Mössbauer spectroscopy, and X-ray photoelectron spectroscopy. The unique extensive oxidation of iron species (Fe(0) → Fe(3+)) with simultaneous reduction of Mo cations (Mo(6+) → Mo(5+)), occuring during the mechanosynthesis of Sr(2)FeMoO(6), is attributed to the mechanically triggered formation of tiny metallic iron nanoparticles in superparamagnetic state with a large reaction surface and a high oxidation affinity, whose steady presence in the reaction mixture of the milled educts initiates/promotes the swift redox reaction. High-resolution transmission electron microscopy observations reveal that the mechanosynthesized Sr(2)FeMoO(6), even after its moderate thermal treatment at 923 K for 30 min in air, exhibits the nanostructured nature with the average particle size of 21(4) nm. At the short-range scale, the nanostructure of the as-prepared Sr(2)FeMoO(6) is characterized by both, the strongly distorted geometry of the constituent FeO(6) octahedra and the extraordinarily high degree of anti-site disorder. The degree of anti-site disorder ASD = 0.5, derived independently from the present experimental XRD, Mössbauer, and SQUID magnetization data, corresponds to the completely random distribution of Fe(3+) and Mo(5+) cations over the sites of octahedral coordination provided by the double perovskite structure. Moreover, the fully anti-site disordered Sr(2)FeMoO(6) nanoparticles exhibit superparamagnetism with the blocking temperature T (B) = 240 K and the deteriorated effective magnetic moment ÎŒ = 0.055 ÎŒ (B) per formula unit

    Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    No full text
    Abstract New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L−1 in 5 days and to 2.0 (±0.1) mg L−1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L−1 in 5 days and to 2.2 (±0.1) mg L−1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L−1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc
    corecore