6 research outputs found

    Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene

    Get PDF
    We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration

    Experimental study on breakup reaction of beryllium and carbon induced with 14-MeV neutrons based on emitted charged-particle measurements

    No full text
    Detailed measurements of α-particle emission double differential cross section for beryllium and carbon with 14-MeV incident neutrons were carried out. In order to identify contributing reaction channels to the 9Be(n,2n + 2α) and 12C(n,n' + 3α) reactions, we attempted to reproduce energy distributions of emitted particles by Monte Carlo calculations according to reaction kinematics of a lot of channels which contribute to the reactions. As for the 9Be(n,2n + 2α) reaction, a contribution of the 9Be(n,α)6He* channels and the simultaneous breakup channel was suggested to account for the energy and angular distribution of emitted α-particles and neutrons. As for the 12C(n,n' + 3α) reaction, the 12C(n,α)9Be* channels were largely contributed and well reproduced the experimental data
    corecore