8 research outputs found

    Facing the Green Threat: A Water Flea’s Defenses against a Carnivorous Plant

    Get PDF
    Every ecosystem shows multiple levels of species interactions, which are often difficult to isolate and to classify regarding their specific nature. For most of the observed interactions, it comes down to either competition or consumption. The modes of consumption are various and defined by the nature of the consumed organism, e.g., carnivory, herbivory, as well as the extent of the consumption, e.g., grazing, parasitism. While the majority of consumers are animals, carnivorous plants can also pose a threat to arthropods. Water fleas of the family Daphniidae are keystone species in many lentic ecosystems. As most abundant filter feeders, they link the primary production to higher trophic levels. As a response to the high predatory pressures, water fleas have evolved various inducible defenses against animal predators. Here we show the first example, to our knowledge, in Ceriodaphnia dubia of such inducible defenses of an animal against a coexisting plant predator, i.e., the carnivorous bladderwort (Utricularia x neglecta Lehm, Lentibulariaceae). When the bladderwort is present, C. dubia shows changes in morphology, life history and behavior. While the morphological and behavioral adaptations improve C. dubia’s survival rate in the presence of this predator, the life-history parameters likely reflect trade-offs for the defense

    Morc1 as a potential new target gene in mood regulation: when and where to find in the brain

    No full text
    Recent animal and human studies connected the Morc family CW-type zinc finger 1 (Morc1) gene with early life stress and depression. Moreover, the Morc superfamily is related to epigenetic regulation in diverse nuclear processes. So far, the Morc1 gene was mainly studied in spermatogenesis, whereas its distribution and function in the brain are still unknown. In a first attempt to characterize Morc1 in the brain, we performed a Western Blot analysis as well as a real-time PCR analysis during different stages of development. Additionally, we detected Morc1 mRNA using real-time PCR in different mood-regulating brain areas in adult rats. We found that MORC1 protein as well as Morc1 mRNA is already expressed in the brain at embryonic day 14 and is stably expressed until adulthood. Furthermore, Morc1 mRNA is present in many important brain areas of mood regulation like the medial prefrontal cortex, the nucleus accumbens, the hippocampus, the hypothalamus, and the amygdala. The ample distribution in the brain and its molecular structure as a zinc finger protein indicate that Morc1 might act as a transcription factor. This function and its expression in mood-regulating areas already in the early brain development turn Morc1 into a possible candidate gene for mediating early life stress and depression

    Facing the green threat: a waterflea’s defenses against a carnivorous plant.

    Get PDF
    Every ecosystem shows multiple levels of species interactions, which are often difficult to isolate and to classify regarding their specific nature. For most of the observed interactions, it comes down to either competition or consumption. The modes of consumption are various and defined by the nature of the consumed organism, e.g., carnivory, herbivory, as well as the extent of the consumption, e.g., grazing, parasitism. While the majority of consumers are animals, carnivorous plants can also pose a threat to arthropods. Water fleas of the family Daphniidae are keystone species in many lentic ecosystems. As most abundant filter feeders, they link the primary production to higher trophic levels. As a response to the high predatory pressures, water fleas have evolved various inducible defenses against animal predators. Here we show the first example, to our knowledge, in Ceriodaphnia dubia of such inducible defenses of an animal against a coexisting plant predator, i.e., the carnivorous bladderwort (Utricularia x neglecta Lehm, Lentibulariaceae). When the bladderwort is present, C. dubia shows changes in morphology, life history and behavior. While the morphological and behavioral adaptations improve C. dubia’s survival rate in the presence of this predator, the life-history parameters likely reflect trade-offs for the defense

    Morc1\it Morc1 as a potential new target gene in mood regulation

    No full text
    Recent animal and human studies connected the Morc family CW-type zinc finger 1 (Morc1)\textit {Morc family CW-type zinc finger 1 (Morc1)} gene with early life stress and depression. Moreover, the Morc\it Morc superfamily is related to epigenetic regulation in diverse nuclear processes. So far, the Morc1\it Morc1 gene was mainly studied in spermatogenesis, whereas its distribution and function in the brain are still unknown. In a first attempt to characterize Morc1\it Morc1 in the brain, we performed a Western Blot analysis as well as a real-time PCR analysis during different stages of development. Additionally, we detected Morc1\it Morc1 mRNA using real-time PCR in different mood-regulating brain areas in adult rats. We found that Morc1\it Morc1 protein as well as Morc1\it Morc1 mRNA is already expressed in the brain at embryonic day 14 and is stably expressed until adulthood. Furthermore, Morc1\it Morc1 mRNA is present in many important brain areas of mood regulation like the medial prefrontal cortex, the nucleus accumbens, the hippocampus, the hypothalamus, and the amygdala. The ample distribution in the brain and its molecular structure as a zinc finger protein indicate that Morc1\it Morc1 might act as a transcription factor. This function and its expression in mood-regulating areas already in the early brain development turn Morc1\it Morc1 into a possible candidate gene for mediating early life stress and depression

    Facing the green threat

    No full text
    Every ecosystem shows multiple levels of species interactions, which are often difficult to isolate and to classify regarding their specific nature. For most of the observed interactions, it comes down to either competition or consumption. The modes of consumption are various and defined by the nature of the consumed organism, e.g., carnivory, herbivory, as well as the extent of the consumption, e.g., grazing, parasitism. While the majority of consumers are animals, carnivorous plants can also pose a threat to arthropods. Water fleas of the family Daphniidae are keystone species in many lentic ecosystems. As most abundant filter feeders, they link the primary production to higher trophic levels. As a response to the high predatory pressures, water fleas have evolved various inducible defenses against animal predators. Here we show the first example, to our knowledge, in Ceriodaphnia dubia\textit {Ceriodaphnia dubia} of such inducible defenses of an animal against a coexisting plant predator, i.e., the carnivorous bladderwort (Utricularia x neglecta \textit {Utricularia x neglecta } Lehm, Lentibulariaceae). When the bladderwort is present, C. dubia\textit {C. dubia} shows changes in morphology, life history and behavior. While the morphological and behavioral adaptations improve C. dubia’s\textit {C. dubia's} survival rate in the presence of this predator, the life-history parameters likely reflect trade-offs for the defense

    An Illegitimate microRNA Target Site within the 3' UTR of MDM4 Affects Ovarian Cancer Progression and Chemosensitivity

    No full text
    Overexpression of MDM4 (also known as MDMX or HDMX) is thought to promote tumorigenesis by decreasing p53 tumor suppressor function. Even modest decrease in Mdm4 levels affects tumorigenesis in mice, suggesting that genetic variants of MDM4 might have similar effects in humans. We sequenced the MDM4 gene in a series of ovarian cancer cell lines and carcinomas to identify mutations and/or single nucleotide polymorphisms (SNPs). We identified an SNP (SNP34091) in the 3'-UTR of MDM4 that creates a putative target site for hsa-miR-191, a microRNA that is highly expressed in normal and tumor tissues. Biochemical evidence supports specific miR-191-dependent regulation of the MDM4-C, but not MDM4-A, variant. Consistently, the A-allele was associated with statistically significant increased expression of MDM4 mRNA and protein levels in ovarian carcinomas. Importantly, the wild-type genotype (A/A) is more frequent (57.8% vs. 42.2% for A/C and C/C, respectively) in patients with high-grade carcinomas than in patients with low-grade carcinomas (47.2% vs. 52.5% for A/A and A/C + C/C, respectively). Moreover, A/A patients who do not express the estrogen receptor had a 4.2-fold [95% confidence interval (CI) = 1.2-13.5; P = 0.02] increased risk of recurrence and 5.5-fold (95% CI = 1.5-20.5; P = 0.01) increased risk of tumor-related death. Unexpectedly, the frequency of p53 mutations was not significantly lower in A/A patients. We conclude that acquisition of an illegitimate miR-191 target site causes downregulation of MDM4 expression, thereby significantly delaying ovarian carcinoma progression and tumor-related death. Importantly, these effects appear to be, at least partly, independent of p53. Cancer Res; 70(23); 1-9. ©2010 AACR.status: publishe
    corecore