544 research outputs found

    Towards an improved understanding of eta --> gamma^* gamma^*

    Full text link
    We argue that high-quality data on the reaction e+e−→π+π−ηe^+e^-\to \pi^+\pi^-\eta will allow one to determine the double off-shell form factor η→γ∗γ∗\eta \to \gamma^*\gamma^* in a model-independent way with controlled accuracy. This is an important step towards a reliable evaluation of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. When analyzing the existing data for e+e−→π+π−ηe^+e^- \to \pi^+\pi^-\eta in the range of total energies 1GeV2<Q22<(4.5GeV)21\text{GeV}^2<Q_2^2<(4.5\text{GeV})^2, we demonstrate that the double off-shell form factor Fηγ∗γ∗(Q12,Q22)F_{\eta\gamma^*\gamma^*}(Q_1^2,Q_2^2) is consistent with the commonly employed factorization ansatz at least for Q12<1GeV2Q_1^2<1\text{GeV}^2, if the effect of the a2a_2 meson is taken into account. However, better data are needed to draw firm conclusions.Comment: 7 pages, 3 figure

    Investigation of a0-f0 mixing

    Get PDF
    We investigate the isospin-violating mixing of the light scalar mesons a0(980) and f0(980) within the unitarized chiral approach. Isospin-violating effects are considered to leading order in the quark mass differences and electromagnetism. In this approach both mesons are generated through meson-meson dynamics. Our results provide a description of the mixing phenomenon within a framework consistent with chiral symmetry and unitarity, where these resonances are not predominantly q q-bar states. Amongst the possible experimental signals, we discuss observable consequences for the reaction J/Psi -> phi pi0 eta in detail. In particular we demonstrate that the effect of a0-f0 mixing is by far the most important isospin-breaking effect in the resonance region and can indeed be extracted from experiment.Comment: 15 pages, 9 figures; discussion extended, title changed, version published in Phys. Rev.

    Efficient and realistic device modeling from atomic detail to the nanoscale

    Full text link
    As semiconductor devices scale to new dimensions, the materials and designs become more dependent on atomic details. NEMO5 is a nanoelectronics modeling package designed for comprehending the critical multi-scale, multi-physics phenomena through efficient computational approaches and quantitatively modeling new generations of nanoelectronic devices as well as predicting novel device architectures and phenomena. This article seeks to provide updates on the current status of the tool and new functionality, including advances in quantum transport simulations and with materials such as metals, topological insulators, and piezoelectrics.Comment: 10 pages, 12 figure

    Instant Two-Body Equation in Breit Frame

    Get PDF
    A quasipotential formalism for elastic scattering from relativistic bound states is based on applying an instant constraint to both initial and final states in the Breit frame. This formalism is advantageous for the analysis of electromagnetic interactions because current conservation and four momentum conservation are realized within a three-dimensional formalism. Wave functions are required in a frame where the total momentum is nonzero, which means that the usual partial wave analysis is inapplicable. In this work, the three-dimensional equation is solved numerically, taking into account the relevant symmetries. A dynamical boost of the interaction also is needed for the instant formalism, which in general requires that the boosted interaction be defined as the solution of a four-dimensional equation. For the case of a scalar separable interaction, this equation is solved and the Lorentz invariance of the three-dimensional formulation using the boosted interaction is verified. For more realistic interactions, a simple approximation is used to characterize the boost of the interaction.Comment: 20 pages in revtex 3, 3 figures. Fixed reform/tex errors

    Parametrization of Realistic Bethe-Salpeter Amplitude for the Deuteron

    Get PDF
    The parametrization of the realistic Bethe-Salpeter amplitude for the deuteron is given. Eight components of the amplitude in the Euclidean space are presented as an analytical fit to the numerical solution of the Bethe-Salpeter equation in the ladder approximation. An applicability of the parametrization to the observables of the deuteron is briefly discussed.Comment: LaTeX, 11 pages, 2 Postscript figures; Text of the Fortran program is available from the author by reques

    Baryon magnetic moments and sigma terms in lattice-regularized chiral perturbation theory

    Get PDF
    An SU(3) chiral Lagrangian for the lightest decuplet of baryons is constructed on a discrete lattice of spacetime points, and is added to an existing lattice Lagrangian for the lightest octets of mesons and baryons. A nonzero lattice spacing renders all loop integrations finite, and the continuum limit of any physical observable is identical to the result obtained from dimensional regularization. Chiral symmetry and gauge invariance are preserved even at nonzero lattice spacing. Specific calculations discussed here include the non-renormalization of a conserved vector current, the magnetic moments of octet baryons, and the pi N and KN sigma terms that relate to the nucleon's strangeness content. The quantitative difference between physics at a nonzero lattice spacing and physics in the continuum limit is easily computed, and it represents an expectation for the size of discretization errors in corresponding lattice QCD simulations.Comment: 19 pages, 5 figures, one paragraph added to introduction, to appear in Phys Rev

    The pion mass dependence of the nucleon form-factors of the energy momentum tensor in the chiral quark-soliton model

    Get PDF
    The nucleon form factors of the energy-momentum tensor are studied in the large-Nc limit in the framework of the chiral quark-soliton model for model parameters that simulate physical situations in which pions are heavy. This allows for a direct comparison to lattice QCD results.Comment: 17 pages, 12 figure

    Light Meson Dynamics Workshop. Mini proceedings

    Full text link
    The mini-proceedings of the Light Meson Dynamics Workshop held in Mainz from February 10th to 12th, 2014, are presented. The web page of the conference, which contains all talks, can be found at https://indico.cern.ch/event/287442/overview .Comment: 46 pages, 17 contributions. Editors: W. Gradl, P. Masjuan, M. Ostrick, and S. Schere

    Electromagnetic corrections in hadronic processes

    Full text link
    In quantum field theory, the splitting of the Hamiltonian into a strong and an electromagnetic part cannot be performed in a unique manner. We propose a convention for disentangling these two effects: one matches the parameters of two theories -- with and without electromagnetic interactions -- at a given scale mu_1, referred to as the matching scale. This procedure enables one to analyze the separation of strong and electromagnetic contributions in a transparent manner. We illustrate the method -- in the framework of the loop expansion -- in a Yukawa model, as well as in the linear sigma model, where we also investigate the corresponding low-energy effective theory.Comment: 19 pages (LaTex), 5 figures, published version. References in the introduction added, discussion shortened, 1 figure removed, conclusions unchange
    • …
    corecore