60 research outputs found

    Separation of poliovirus and poliovirus RNA on Sephadex G 200

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41675/1/705_2005_Article_BF01241426.pd

    The design, construction and performance of the MICE scintillating fibre trackers

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierCharged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.This work was supported by the Science and Technology Facilities Council under grant numbers PP/E003214/1, PP/E000479/1, PP/E000509/1, PP/E000444/1, and through SLAs with STFC-supported laboratories. This work was also supportedby the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy, and by the U.S. National Science Foundation under grants PHY-0301737,PHY-0521313, PHY-0758173 and PHY-0630052. The authors also acknowledge the support of the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan

    Design and construction of the MicroBooNE detector

    Get PDF
    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported

    Genome-Wide Screen in Saccharomyces cerevisiae Identifies Vacuolar Protein Sorting, Autophagy, Biosynthetic, and tRNA Methylation Genes Involved in Life Span Regulation

    Get PDF
    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved

    Isolation and Characterization of RNA Produced in Response to Antigen

    No full text

    Calorimetric Non-Destructive Assay of Large Volume and Heterogeneous Radioactive Waste Drums

    Get PDF
    The EU-CHANCE project aims at the issue of the characterization of conditioned radioactive waste (CRW) and one objective of CHANCE is to focus on: Calorimetry as a comprising non-destructive technique to reduce uncertainties on the inventory of radwaste containing shielded and hidden material difficult to be measured by other means. A MCNP6-based numerical study comprising the particle flux out of a 200L mock-up drum in a Large Volume Calorimeter (LVC) currently manufactured by KEP Nuclear (France) will be presented and discussed. For the analyses, the particle flux and energy deposition in each layer of the calorimeter were determined. The results yield that a significant fraction of the radiation would leave the system and not contribute to the measurable heat deposition. The expected energy deposition is obtained and cumulated for each layer over the whole energy range revealing the fraction of particles actually escaping the LVC calorimeter. While this escape fraction needs and can be determined, the LVC is a very suitable apparatus for the anticipated experiments on large and heterogeneous waste drums that possibly contain deeply buried beta-emitters (e.g. Sr/Y-90) or shielded alpha-sources hidden inside the drum with a significant level of gamma and neutron radiation background radiation. The high-energy part of this gamma and neutron flux may even reach the reference chamber of the calorimeter and deposit some energy there, compromising the calibration and may cause a double-bias
    • …
    corecore