61 research outputs found

    Does the inclusion of 'professional development' teaching improve medical students' communication skills?

    Get PDF
    Background: This study investigated whether the introduction of professional development teaching in the first two years of a medical course improved students' observed communication skills with simulated patients. Students' observed communication skills were related to patient-centred attitudes, confidence in communicating with patients and performance in later clinical examinations.Methods: Eighty-two medical students from two consecutive cohorts at a UK medical school completed two videoed consultations with a simulated patient: one at the beginning of year 1 and one at the end of year 2. Group 1 (n = 35) received a traditional pre-clinical curriculum. Group 2 (n = 47) received a curriculum that included communication skills training integrated into a 'professional development' vertical module. Videoed consultations were rated using the Evans Interview Rating Scale by communication skills tutors. A subset of 27% were double-coded. Inter-rater reliability is reported.Results: Students who had received the professional development teaching achieved higher ratings for use of silence, not interrupting the patient, and keeping the discussion relevant compared to students receiving the traditional curriculum. Patient-centred attitudes were not related to observed communication. Students who were less nervous and felt they knew how to listen were rated as better communicators. Students receiving the traditional curriculum and who had been rated as better communicators when they entered medical school performed less well in the final year clinical examination.Conclusions: Students receiving the professional development training showed significant improvements in certain communication skills, but students in both cohorts improved over time. The lack of a relationship between observed communication skills and patient-centred attitudes may be a reflection of students' inexperience in working with patients, resulting in 'patient-centredness' being an abstract concept. Students in the early years of their medical course may benefit from further opportunities to practise basic communication skills on a one-to-one basis with patients

    Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager

    Get PDF
    The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm (25.5∘×19.1∘ FOV) to 110 mm (6.2∘×4.2∘ FOV) and will acquire data at pixel scales of 148-540 μm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover’s mast with a stereo baseline of 24.3±0.1 cm and a toe-in angle of 1.17±0.03∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600×1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors’ Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26thth and May 9thth, 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples

    Ageing-associated changes in transcriptional elongation influence longevity

    Get PDF
    Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1,2,3,4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin–IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures

    Streptococcus pneumoniae Serotype 1 Capsular Polysaccharide Induces CD8+CD28− Regulatory T Lymphocytes by TCR Crosslinking

    Get PDF
    Zwitterionic capsular polysaccharides (ZPS) of commensal bacteria are characterized by having both positive and negative charged substituents on each repeating unit of a highly repetitive structure that has an α-helix configuration. In this paper we look at the immune response of CD8+ T cells to ZPSs. Intraperitoneal application of the ZPS Sp1 from Streptococcus pneumoniae serotype 1 induces CD8+CD28− T cells in the spleen and peritoneal cavity of WT mice. However, chemically modified Sp1 (mSp1) without the positive charge and resembling common negatively charged polysaccharides fails to induce CD8+CD28− T lymphocytes. The Sp1-induced CD8+CD28− T lymphocytes are CD122lowCTLA-4+CD39+. They synthesize IL-10 and TGF-β. The Sp1-induced CD8+CD28− T cells exhibit immunosuppressive properties on CD4+ T cells in vivo and in vitro. Experimental approaches to elucidate the mechanism of CD8+ T cell activation by Sp1 demonstrate in a dimeric MHC class I-Ig model that Sp1 induces CD8+ T cell activation by enhancing crosslinking of TCR. The expansion of CD8+CD28− T cells is independent, of direct antigen-presenting cell/T cell contact and, to the specificity of the T cell receptor (TCR). In CD8+CD28− T cells, Sp1 enhances Zap-70 phosphorylation and increasingly involves NF-κB which ultimately results in protection versus apoptosis and cell death and promotes survival and accumulation of the CD8+CD28− population. This is the first description of a naturally occurring bacterial antigen that is able to induce suppressive CD8+CD28− T lymphocytes in vivo and in vitro. The underlying mechanism of CD8+ T cell activation appears to rely on enhanced TCR crosslinking. The data provides evidence that ZPS of commensal bacteria play an important role in peripheral tolerance mechanisms and the maintenance of the homeostasis of the immune system

    Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: bioinformatic analysis and reporting

    Get PDF
    Metagenomic next-generation sequencing (mNGS) is an untargeted technique for determination of microbial DNA/RNA sequences in a variety of sample types from patients with infectious syndromes. mNGS is still in its early stages of broader translation into clinical applications. To further support the development, implementation, optimization and standardization of mNGS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mNGS for viral diagnostics to share methodologies and experiences, and to develop application guidelines. Following the ENNGS publication Recommendations for the introduction of mNGS in clinical virology, part I: wet lab procedure in this journal, the current manuscript aims to provide practical recommendations for the bioinformatic analysis of mNGS data and reporting of results to clinicians.Molecular basis of virus replication, viral pathogenesis and antiviral strategie

    Why we need segmentation when designing social marketing programs

    No full text
    Evolving from the marketing discipline, social marketing operates with a customer focus that involves designing programs around the satisfaction and needs of customers while ensuring that offered alternatives are more attractive than the competition. Given that social marketers are outgunned by competitors operating with larger budgets and reach, optimisation of scarce resources is critical to deliver maximum effect. This chapter presents a competitively minded view proposing that social marketers need to embrace marketing thinking and apply segmentation. Application of segmentation to understand response to programs at a segment level, use of theory to inform segmentation and application of personas to simplify complex multivariate data output generated from segmentation approaches are detailed. By applying personas, social marketers will be able to more easily understand segments and in turn plan and design programs that meet the needs and wants of more people in segments targeted. Use of the same toolkits, timeframes and thinking allows social marketers to become the enemy delivering programs, products and services that people want at a convenient time and place and price

    The multi-actor perspective of engagement on social media

    No full text
    Despite the known benefits offered by social media to create engagement in social marketing programs, scholars have highlighted the need for more evidence-based, practical, and measurable approaches to social media use in social marketing contexts. This netnographic study employed a four-level multi-actor engagement framework originally proposed by Shawky et al. to explore engagement in a single Facebook community. We identified social media measurement tools for assessing connections, interactions, and loyalty of multiple actors which will assist social marketing practitioners’ understanding of different actors’ interactions with the social media content, enabling them to maintain these actors’ levels of engagement, advance their engagement to a higher level, or attract others to expand the community. </jats:p
    corecore