19 research outputs found

    Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

    Get PDF
    Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.This work is part of the ‘‘SpatioTemporal Omics Consortium’’ (STOC) paper package. A list of STOC members is available at: http://sto-consortium.org. We would like to thank the MOTIC China Group, Rongqin Ke (Huaqiao University, Xiamen, China), Jiazuan Ni (Shenzhen University, Shenzhen, China), Wei Huang (Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China), and Jonathan S. Weissman (Whitehead Institute, Boston, USA) for their help. This work was supported by the grant of Top Ten Foundamental Research Institutes of Shenzhen, the Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), and the Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011); Longqi Liu was supported by the National Natural Science Foundation of China (31900466) and Miguel A. Esteban’s laboratory at the Guangzhou Institutes of Biomedicine and Health by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), National Natural Science Foundation of China (92068106), and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075).S

    Spatial deformable transformer for 3D point cloud registration

    No full text
    Abstract Deformable attention only focuses on a small group of key sample-points around the reference point and make itself be able to capture dynamically the local features of input feature map without considering the size of the feature map. Its introduction into point cloud registration will be quicker and easier to extract local geometric features from point cloud than attention. Therefore, we propose a point cloud registration method based on Spatial Deformable Transformer (SDT). SDT consists of a deformable self-attention module and a cross-attention module where the deformable self-attention module is used to enhance local geometric feature representation and the cross-attention module is employed to enhance feature discriminative capability of spatial correspondences. The experimental results show that compared to state-of-the-art registration methods, SDT has a better matching recall, inlier ratio, and registration recall on 3DMatch and 3DLoMatch scene, and has a better generalization ability and time efficiency on ModelNet40 and ModelLoNet40 scene

    Improved Robot Path Planning Method Based on Deep Reinforcement Learning

    No full text
    With the advancement of robotics, the field of path planning is currently experiencing a period of prosperity. Researchers strive to address this nonlinear problem and have achieved remarkable results through the implementation of the Deep Reinforcement Learning (DRL) algorithm DQN (Deep Q-Network). However, persistent challenges remain, including the curse of dimensionality, difficulties of model convergence and sparsity in rewards. To tackle these problems, this paper proposes an enhanced DDQN (Double DQN) path planning approach, in which the information after dimensionality reduction is fed into a two-branch network that incorporates expert knowledge and an optimized reward function to guide the training process. The data generated during the training phase are initially discretized into corresponding low-dimensional spaces. An “expert experience” module is introduced to facilitate the model’s early-stage training acceleration in the Epsilon–Greedy algorithm. To tackle navigation and obstacle avoidance separately, a dual-branch network structure is presented. We further optimize the reward function enabling intelligent agents to receive prompt feedback from the environment after performing each action. Experiments conducted in both virtual and real-world environments have demonstrated that the enhanced algorithm can accelerate model convergence, improve training stability and generate a smooth, shorter and collision-free path

    Metabolic Brain Network Analysis of FDG-PET in Alzheimer’s Disease Using Kernel-Based Persistent Features

    No full text
    Recent research of persistent homology in algebraic topology has shown that the altered network organization of human brain provides a promising indicator of many neuropsychiatric disorders and neurodegenerative diseases. However, the current slope-based approach may not accurately characterize changes of persistent features over graph filtration because such curves are not strictly linear. Moreover, our previous integrated persistent feature (IPF) works well on an rs-fMRI cohort while it has not yet been studied on metabolic brain networks. To address these issues, we propose a novel univariate network measurement, kernel-based IPF (KBI), based on the prior IPF, to quantify the difference between IPF curves. In our experiments, we apply the KBI index to study fluorodeoxyglucose positron emission tomography (FDG-PET) imaging data from 140 subjects with Alzheimer’s disease (AD), 280 subjects with mild cognitive impairment (MCI), and 280 healthy normal controls (NC). The results show the disruption of network integration in the progress of AD. Compared to previous persistent homology-based measures, as well as other standard graph-based measures that characterize small-world organization and modular structure, our proposed network index KBI possesses more significant group difference and better classification performance, suggesting that it may be used as an effective preclinical AD imaging biomarker

    A Unified Indexing Strategy for the Mixed Data of a Future Marine GIS

    No full text

    Deep cross-modal discriminant adversarial learning for zero-shot sketch-based image retrieval

    No full text
    Zero-shot sketch-based image retrieval (ZS-SBIR) is an extension of sketch-based image retrieval (SBIR) that aims to search relevant images with query sketches of the unseen categories. Most previous methods focus more on preserving semantic knowledge and improving domain alignment performance, but neglect to capture the correlation between inter-modal features, resulting in unsatisfactory performance. Hence, a sketch-image cross-modal retrieval framework is proposed to maximize the sketch-image correlation. For this framework, we develop a discriminant adversarial learning method that incorporates intra-modal discrimination, inter-modal consistency, and inter-modal correlation into a deep learning network for common feature representation learning. Specifically, sketch and image features are first projected into a shared feature subspace to achieve modality-invariance. Subsequently, we adopt a category label predictor to achieve intra-modal discrimination, use adversarial learning to confuse modal information for inter-modal consistency, and introduce correlation learning to maximize inter-modal correlation. Finally, the trained deep learning model is used to test unseen categories. Extensive experiments conducted on three zero-shot datasets show that this method outperforms state-of-the-art methods. For retrieval accuracy of unseen categories, this method exceeds the state-of-the-art methods by approximately 0.6% on the RSketch dataset, 5% on the Sketchy dataset, and 7% on the TU-Berlin dataset. We also conduct experiments on the dataset of image-based 3D model scene retrieval, the proposed method significantly outperforms the state-of-the-art approaches in all standard metrics

    Generic Mechanochemical Grafting Strategy toward Organophilic Carbon Nanotubes

    No full text
    Although carbon nanotubes (CNTs) have been produced in industrial scale, their poor dispersibility in organic solvents still imposes a huge challenge for their practical applications. In the present work, we propose a generic mechanochemical grafting strategy to prepare the organo-soluable CNTs, which is facile, efficient, and scalable. Significantly, the solvent spectrum of the CNTs suspension can be simply extended by changing the chemical composition of the grafted elastomer chains. The prospect of the organo-solubale CNTs is demonstrated by the free-standing buckypapers by direct filtration of the CNT colloids. Such buckypapers exhibit great potential as robust and ultraflexible conductors due to the combination of high toughness and stable conductivity under cyclic bending and twisting. Furthermore, this facile surface modification strategy of CNTs also enables remarkable improvement in mechanical properties of CNT-based rubber composites. We envision that the present work offers a facile yet efficient strategy for scalable production of organosoluable CNTs and other nanoparticles, which is of great scientific and technological interest
    corecore