813 research outputs found

    A Constitutively Mannose-Sensitive Agglutinating Salmonella enterica subsp. enterica Serovar Typhimurium Strain, Carrying a Transposon in the Fimbrial Usher Gene stbC, Exhibits Multidrug Resistance and Flagellated Phenotypes

    Get PDF
    Static broth culture favors Salmonella enterica subsp. enterica serovar Typhimurium to produce type 1 fimbriae, while solid agar inhibits its expression. A transposon inserted in stbC, which would encode an usher for Stb fimbriae of a non-flagellar Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, conferred it to agglutinate yeast cells on both cultures. RT-PCR revealed that the expression of the fimbrial subunit gene fimA, and fimZ, a regulatory gene of fimA, were both increased in the stbC mutant when grown on LB agar; fimW, a repressor gene of fimA, exhibited lower expression. Flagella were observed in the stbC mutant and this phenotype was correlated with the motile phenotype. Microarray data and RT-PCR indicated that the expression of three genes, motA, motB, and cheM, was enhanced in the stbC mutant. The stbC mutant was resistant to several antibiotics, consistent with the finding that expression of yhcQ and ramA was enhanced. A complementation test revealed that transforming a recombinant plasmid possessing the stbC restored the mannose-sensitive agglutination phenotype to the stbC mutant much as that in the parental Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, indicating the possibility of an interplay of different fimbrial systems in coordinating their expression

    Modulating Microglia/Macrophage Activation by CDNF Promotes Transplantation of Fetal Ventral Mesencephalic Graft Survival and Function in a Hemiparkinsonian Rat Model

    Get PDF
    Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta, which leads to the motor control deficits. Recently, cell transplantation is a cutting-edge technique for the therapy of PD. Nevertheless, one key bottleneck to realizing such potential is allogenic immune reaction of tissue grafts by recipients. Cerebral dopamine neurotrophic factor (CDNF) was shown to possess immune-modulatory properties that benefit neurodegenerative diseases. We hypothesized that co-administration of CDNF with fetal ventral mesencephalic (VM) tissue can improve the success of VM replacement therapies by attenuating immune responses. Hemiparkinsonian rats were generated by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats, with/without CDNF administration. Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and smallanimal positron emission tomography (PET) coupled with [F-18] DOPA or [F-18] FE-PE2I, respectively. In addition, transplantation-related inflammatory response was determined by uptake of [F-18] FEPPA in the grafted side of striatum. Immunohistochemistry (IHC) examination was used to determine the survival of the grated dopaminergic neurons in the striatum and to investigate immune-modulatory effects of CDNF. The modulation of inflammatory responses caused by CDNF might involve enhancing M2 subset polarization and increasing fractal dimensions of 6-OHDA-treated BV2 microglial cell line. Analysis of CDNF-induced changes to gene expressions of 6-OHDA-stimulated BV2 cells implies that these alternations of the biomarkers and microglial morphology are implicated in the upregulation of protein kinase B signaling as well as regulation of catalytic, transferase, and protein serine/threonine kinase activity. The effects of CDNF on 6-OHDA-induced alternation of the canonical pathway in BV2 microglial cells is highly associated with PI3K-mediated phagosome formation. Our results are the first to show that CDNF administration enhances the survival of the grafted dopaminergic neurons and improves functional recovery in PD animal model. Modulation of the polarization, morphological characteristics, and transcriptional profiles of 6-OHDA-stimualted microglia by CDNF may possess these properties in transplantation-based regenerative therapies.Peer reviewe

    Modulating Microglia/Macrophage Activation by CDNF Promotes Transplantation of Fetal Ventral Mesencephalic Graft Survival and Function in a Hemiparkinsonian Rat Model

    Get PDF
    Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta, which leads to the motor control deficits. Recently, cell transplantation is a cutting-edge technique for the therapy of PD. Nevertheless, one key bottleneck to realizing such potential is allogenic immune reaction of tissue grafts by recipients. Cerebral dopamine neurotrophic factor (CDNF) was shown to possess immune-modulatory properties that benefit neurodegenerative diseases. We hypothesized that co-administration of CDNF with fetal ventral mesencephalic (VM) tissue can improve the success of VM replacement therapies by attenuating immune responses. Hemiparkinsonian rats were generated by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats, with/without CDNF administration. Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small-animal positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. In addition, transplantation-related inflammatory response was determined by uptake of [18F] FEPPA in the grafted side of striatum. Immunohistochemistry (IHC) examination was used to determine the survival of the grated dopaminergic neurons in the striatum and to investigate immune-modulatory effects of CDNF. The modulation of inflammatory responses caused by CDNF might involve enhancing M2 subset polarization and increasing fractal dimensions of 6-OHDA-treated BV2 microglial cell line. Analysis of CDNF-induced changes to gene expressions of 6-OHDA-stimulated BV2 cells implies that these alternations of the biomarkers and microglial morphology are implicated in the upregulation of protein kinase B signaling as well as regulation of catalytic, transferase, and protein serine/threonine kinase activity. The effects of CDNF on 6-OHDA-induced alternation of the canonical pathway in BV2 microglial cells is highly associated with PI3K-mediated phagosome formation. Our results are the first to show that CDNF administration enhances the survival of the grafted dopaminergic neurons and improves functional recovery in PD animal model. Modulation of the polarization, morphological characteristics, and transcriptional profiles of 6-OHDA-stimualted microglia by CDNF may possess these properties in transplantation-based regenerative therapies

    Virological investigation of four outbreaks of influenza B reassortants in the northern region of Taiwan from October 2006 to February 2007

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>From October 2006 to February 2007, clinical specimens from 452 patients with symptoms related to respiratory tract infection in the northern region of Taiwan were collected. Real-time PCR and direct immunofluorescent antibody tests showed that 145 (32%) patients had influenza B virus infections. Subsequently, nucleotide sequence analyses of both hemagglutinin (HA) and neuraminidase (NA) genes of 39 isolates were performed. Isolated viruses were antigenically characterized using hemagglutinin inhibition (HI) test.</p> <p>Findings</p> <p>Phylogenetic tree analysis showed that all the isolates belonged to the B reassortant lineage with HA gene belonged to the B/Victoria/2/87 lineage and the NA gene belonged to the B/Yamagata/16/88 lineage. In addition, a group of children aged between 6 to 8 years old resided in Yilan county were infected with a variant strain. Hemagglutinin inhibition (HI) tests confirmed that all the reassortant influenza B viruses were B/Malaysia/2506/04-like viruses. Pre- and post-immunized serum samples from 4 normal volunteers inoculated with 2007 influenza vaccine were evaluated for their HI activity on 6 reassortant B isolates including two variants that we found in the Yilan county. The results demonstrated that after vaccination, all four vaccinees had at least 4-fold increases of their HI titers.</p> <p>Conclusion</p> <p>The results indicate that the 2006–2007 seasonal influenza vaccine was effective in stimulating protective immunity against the influenza B variants identified in Yilan county. Continuous surveillance of emerging influenza B variants in the northern region of Taiwan is important for the selection of proper vaccine candidate in the future.</p

    A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery

    No full text
    International audienceCathode structure plays a vital role in lithium-air battery for that it can provide space for discharged products accommodation and free path for oxygen, e− and Li+ transport. However, pore blockage, cathode passivation and degradation all result in low discharge rates and poor cycling capability. To get rid of these predicaments, a novel highly conductive dual pore carbon aerogel based air cathode is fabricated to construct a lithium-air battery, which exhibits 18 to 525 cycles in the LiTFSI/sulfolane electrolyte at a current density varying from 1.00 mA cm−2 to 0.05 mA cm−2, accompanied by a high energy efficiency of 78.32%. We postulate that the essence lies in that the as-prepared air cathode inventively create a suitable tri-phase boundary reaction zone, facilitating oxygen and Li+ diffusion in two independant pore channels, thus realizing a relative higher discharge rate capability, lower pore blockage and cathode passivation. Further, pore structure, carbon loading, rate capability, discharge depth and the air's effect are exploited and coordinated, targeting for a high power and reversible lithium-air battery. Such nano-porous carbon aerogel air cathode of novel dual pore structure and material design is expected to be an attractive alternative for lithium-air batteries and other lithium based batteries
    corecore