145 research outputs found

    On determination of statistical properties of spectra from parametric level dynamics

    Full text link
    We analyze an approach aiming at determining statistical properties of spectra of time-periodic quantum chaotic system based on the parameter dynamics of their quasienergies. In particular we show that application of the methods of statistical physics, proposed previously in the literature, taking into account appropriate integrals of motion of the parametric dynamics is fully justified, even if the used integrals of motion do not determine the invariant manifold in a unique way. The indetermination of the manifold is removed by applying Dirac's theory of constrained Hamiltonian systems and imposing appropriate primary, first-class constraints and a gauge transformation generated by them in the standard way. The obtained results close the gap in the whole reasoning aiming at understanding statistical properties of spectra in terms of parametric dynamics.Comment: 9 pages without figure

    Separable approximation for mixed states of composite quantum systems

    Get PDF
    We describe a purely algebraic method for finding the best separable approximation to a mixed state of a composite 2x2 quantum system, consisting of a decomposition of the state into a linear combination of a mixed separable part and a pure entangled one. We prove that, in a generic case, the weight of the pure part in the decomposition equals the concurrence of the state.Comment: 13 pages, no figures; minor changes; accepted for publication in PR

    When is a pure state of three qubits determined by its single-particle reduced density matrices?

    Full text link
    Using techniques from symplectic geometry, we prove that a pure state of three qubits is up to local unitaries uniquely determined by its one-particle reduced density matrices exactly when their ordered spectra belong to the boundary of the, so called, Kirwan polytope. Otherwise, the states with given reduced density matrices are parameterized, up to local unitary equivalence, by two real variables. Given inevitable experimental imprecisions, this means that already for three qubits a pure quantum state can never be reconstructed from single-particle tomography. We moreover show that knowledge of the reduced density matrices is always sufficient if one is given the additional promise that the quantum state is not convertible to the Greenberger--Horne--Zeilinger (GHZ) state by stochastic local operations and classical communication (SLOCC), and discuss generalizations of our results to an arbitary number of qubits.Comment: 19 page

    Cloning of spin-coherent states

    Full text link
    We consider optimal cloning of the spin coherent states in Hilbert spaces of different dimensionality d. We give explicit form of optimal cloning transformation for spin coherent states in the three-dimensional space, analytical results for the fidelity of the optimal cloning in d=3 and d=4 as well as numerical results for higher dimensions. In the low-dimensional case we construct the corresponding completely positive maps and exhibit their structure with the help of Jamiolkowski isomorphism. This allows us to formulate some conjectures about the form of optimal coherent cloning CP maps in arbitrary dimension.Comment: LateX, 9 pages, 1 figur

    Separability and distillability in composite quantum systems -a primer-

    Get PDF
    Quantum mechanics is already 100 years old, but remains alive and full of challenging open problems. On one hand, the problems encountered at the frontiers of modern theoretical physics like Quantum Gravity, String Theories, etc. concern Quantum Theory, and are at the same time related to open problems of modern mathematics. But even within non-relativistic quantum mechanics itself there are fundamental unresolved problems that can be formulated in elementary terms. These problems are also related to challenging open questions of modern mathematics; linear algebra and functional analysis in particular. Two of these problems will be discussed in this article: a) the separability problem, i.e. the question when the state of a composite quantum system does not contain any quantum correlations or entanglement and b) the distillability problem, i.e. the question when the state of a composite quantum system can be transformed to an entangled pure state using local operations (local refers here to component subsystems of a given system). Although many results concerning the above mentioned problems have been obtained (in particular in the last few years in the framework of Quantum Information Theory), both problems remain until now essentially open. We will present a primer on the current state of knowledge concerning these problems, and discuss the relation of these problems to one of the most challenging questions of linear algebra: the classification and characterization of positive operator maps.Comment: 11 pages latex, 1 eps figure. Final version, to appear in J. Mod. Optics, minor typos corrected, references adde

    Pentagrams and paradoxes

    Full text link
    Klyachko and coworkers consider an orthogonality graph in the form of a pentagram, and in this way derive a Kochen-Specker inequality for spin 1 systems. In some low-dimensional situations Hilbert spaces are naturally organised, by a magical choice of basis, into SO(N) orbits. Combining these ideas some very elegant results emerge. We give a careful discussion of the pentagram operator, and then show how the pentagram underlies a number of other quantum "paradoxes", such as that of Hardy.Comment: 14 pages, 4 figure

    Convexity of momentum map, Morse index, and quantum entanglement

    Full text link
    We analyze form the topological perspective the space of all SLOCC (Stochastic Local Operations with Classical Communication) classes of pure states for composite quantum systems. We do it for both distinguishable and indistinguishable particles. In general, the topology of this space is rather complicated as it is a non-Hausdorff space. Using geometric invariant theory (GIT) and momentum map geometry we propose a way to divide the space of all SLOCC classes into mathematically and physically meaningful families. Each family consists of possibly many `asymptotically' equivalent SLOCC classes. Moreover, each contains exactly one distinguished SLOCC class on which the total variance (a well defined measure of entanglement) of the state Var[v] attains maximum. We provide an algorithm for finding critical sets of Var[v], which makes use of the convexity of the momentum map and allows classification of such defined families of SLOCC classes. The number of families is in general infinite. We introduce an additional refinement into finitely many groups of families using the recent developments in the momentum map geometry known as Ness stratification. We also discuss how to define it equivalently using the convexity of the momentum map applied to SLOCC classes. Moreover, we note that the Morse index at the critical set of the total variance of state has an interpretation of number of non-SLOCC directions in which entanglement increases and calculate it for several exemplary systems. Finally, we introduce the SLOCC-invariant measure of entanglement as a square root of the total variance of state at the critical point and explain its geometric meaning.Comment: 37 pages, 2 figures, changes in the manuscript structur

    Geometry of entangled states

    Get PDF
    Geometric properties of the set of quantum entangled states are investigated. We propose an explicit method to compute the dimension of local orbits for any mixed state of the general K x M problem and characterize the set of effectively different states (which cannot be related by local transformations). Thus we generalize earlier results obtained for the simplest 2 x 2 system, which lead to a stratification of the 6D set of N=4 pure states. We define the concept of absolutely separable states, for which all globally equivalent states are separable.Comment: 16 latex pages, 4 figures in epsf, minor corrections, references updated, to appear in Phys. Rev.

    Tunneling and the Band Structure of Chaotic Systems

    Full text link
    We compute the dispersion laws of chaotic periodic systems using the semiclassical periodic orbit theory to approximate the trace of the powers of the evolution operator. Aside from the usual real trajectories, we also include complex orbits. These turn out to be fundamental for a proper description of the band structure since they incorporate conduction processes through tunneling mechanisms. The results obtained, illustrated with the kicked-Harper model, are in excellent agreement with numerical simulations, even in the extreme quantum regime.Comment: 11 pages, Latex, figures on request to the author (to be sent by fax
    corecore