948 research outputs found

    Hierarchy in temporal quantum correlations

    Full text link
    Einstein-Podolsky-Rosen (EPR) steering is an intermediate quantum correlation that lies in between entanglement and Bell non-locality. Its temporal analogue, temporal steering, has recently been shown to have applications in quantum information and open quantum systems. Here, we show that there exists a hierarchy among the three temporal quantum correlations: temporal inseparability, temporal steering, and macrorealism. Given that the temporal inseparability can be used to define a measure of quantum causality, similarly the quantification of temporal steering can be viewed as a weaker measure of direct cause and can be used to distinguish between direct cause and common cause in a quantum network.Comment: 10 pages, 3 figure

    Robust self-testing of steerable quantum assemblages and its applications on device-independent quantum certification

    Get PDF
    Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing. For instance, the maximal quantum violation of the Clauser-Horne-Shimony-Holt inequality certifies that the underlying state contains the two-qubit maximally entangled state and the measurements of one party contains a pair of anti-commuting qubit observables. As a consequence, the other party automatically verifies the set of states remotely steered, namely the "assemblage", is in the eigenstates of a pair of anti-commuting observables. It is natural to ask if the quantum violation of the Bell inequality is not maximally achieved, or if one does not care about self-testing the state or measurements, are we capable of estimating how close the underlying assemblage is to the reference one? In this work, we provide a systematic device-independent estimation by proposing a framework called "robust self-testing of steerable quantum assemblages". In particular, we consider assemblages violating several paradigmatic Bell inequalities and obtain the robust self-testing statement for each scenario. Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved. Our work thus not only paves a way for exploring the connection between the boundary of quantum set of correlations and steerable assemblages, but also provides a useful tool in the areas of DI quantum certification. As two explicit applications, we show 1) that it can be used for an alternative proof of the protocol of DI certification of all entangled two-qubit states proposed by Bowles et al., and 2) that it can be used to verify all non-entanglement-breaking qubit channels with fewer assumptions compared with the work of Rosset et al.Comment: Comments welcome! The MATLAB codes to accompany this work can be found at https://git.io/Jvnmn . v2: A paragraph was added in Discussion Section. v3: Accepted version. Major revision on self-testing complex-valued assemblage

    Complete classification of steerability under local filters and its relation with measurement incompatibility

    Get PDF
    Quantum steering is a central resource for one-sided device-independent quantum information. It is manipulated via one-way local operations and classical communication, such as local filtering on the trusted party. Here, we provide a necessary and sufficient condition for a steering assemblage to be transformable into another via local filtering. We characterize the equivalence classes with respect to filters in terms of the steering equivalent observables (SEO), first proposed to connect the problem of steerability and measurement incompatibility. We provide an efficient method to compute the extractable steerability that is maximal via local filters and show that it coincides with the incompatibility of the SEO. Moreover, we show that there always exists a bipartite state that provides an assemblage with steerability equal to the incompatibility of the measurements on the untrusted party. Finally, we investigate the optimal success probability and rates for transformation protocols (distillation and dilution) in the single-shot scenario together with examples

    Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI).</p> <p>Methods</p> <p>Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis.</p> <p>Results</p> <p>Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4.</p> <p>Conclusions</p> <p>Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.</p

    The flow back tracing and DDoS defense mechanism of the TWAREN defender cloud

    Get PDF
    The TWAREN Defender Cloud is a distributed filter platform on thenetwork backbone to help defending our connecting institutions against maliciousnetwork attacks. By combining the security reports from participating schools, thissystem can block the incoming threats from the entry points, thus it helps protectingall connecting institutions in the most economic and effective way. This paper aimedat explaining the analyzer design, its mechanism to back trace DDoS attack flows totheir entry points and the defense mechanism it provides to block the threats

    Experimental demonstration of measurement-device-independent measure of quantum steering

    Get PDF
    Within the framework of quantum refereed steering games, quantum steerability can be certified without any assumption on the underlying state nor the measurements involved. Such a scheme is termed the measurement-device-independent (MDI) scenario. Here, we introduce a measure of steerability in an MDI scenario, i.e., the result merely depends on the observed statistics and the quantum inputs. We prove that such a measure satisfies the convex steering monotone. Moreover, it is robust against not only measurement biases but also losses. We also experimentally estimate the amount of the measure with an entangled photon source. As two by-products, our experimental results provide lower bounds on an entanglement measure of the underlying state and an incompatible measure of the involved measurement. Our research paves a way for exploring one-side device-independent quantum information processing within an MDI framework

    Low-Energy Charge-Density Excitations in MgB2_{2}: Striking Interplay between Single-Particle and Collective Behavior for Large Momenta

    Full text link
    A sharp feature in the charge-density excitation spectra of single-crystal MgB2_{2}, displaying a remarkable cosine-like, periodic energy dispersion with momentum transfer (qq) along the cc^{*}-axis, has been observed for the first time by high-resolution non-resonant inelastic x-ray scattering (NIXS). Time-dependent density-functional theory calculations show that the physics underlying the NIXS data is strong coupling between single-particle and collective degrees of freedom, mediated by large crystal local-field effects. As a result, the small-qq collective mode residing in the single-particle excitation gap of the B π\pi bands reappears periodically in higher Brillouin zones. The NIXS data thus embody a novel signature of the layered electronic structure of MgB2_{2}.Comment: 5 pages, 4 figures, submitted to PR
    corecore