2 research outputs found

    Fgfr3 Is a Positive Regulator of Osteoblast Expansion and Differentiation During Zebrafish Skull Vault Development

    No full text
    International audienceGain or loss-of-function mutations in fibroblast growth factor receptor 3 (FGFR3) result in cranial vault defects highlighting the protein's role in membranous ossification. Zebrafish express high levels of fgfr3 during skull development; in order to study FGFR3's role in cranial vault development, we generated the first fgfr3 loss-of-function zebrafish (fgfr3( lof/lof)). The mutant fish exhibited major changes in the craniofacial skeleton, with a lack of sutures, abnormal frontal and parietal bones, and the presence of ectopic bones. Integrated analyses (in vivo imaging and single-cell RNA sequencing of the osteoblast lineage) of zebrafish fgfr3( lof/lof) revealed a delay in osteoblast expansion and differentiation, together with changes in the extracellular matrix. These findings demonstrate that fgfr3 is a positive regulator of osteogenesis. We conclude that changes in the extracellular matrix within growing bone might impair cell-cell communication, mineralization, and new osteoblast recruitment. (c) 2020 American Society for Bone and Mineral Research

    Theileria parasites sequester host eIF5A to escape elimination by host-mediated autophagy

    No full text
    Abstract Intracellular pathogens develop elaborate mechanisms to survive within the hostile environments of host cells. Theileria parasites infect bovine leukocytes and cause devastating diseases in cattle in developing countries. Theileria spp. have evolved sophisticated strategies to hijack host leukocytes, inducing proliferative and invasive phenotypes characteristic of cell transformation. Intracellular Theileria parasites secrete proteins into the host cell and recruit host proteins to induce oncogenic signaling for parasite survival. It is unknown how Theileria parasites evade host cell defense mechanisms, such as autophagy, to survive within host cells. Here, we show that Theileria annulata parasites sequester the host eIF5A protein to their surface to escape elimination by autophagic processes. We identified a small-molecule compound that reduces parasite load by inducing autophagic flux in host leukocytes, thereby uncoupling Theileria parasite survival from host cell survival. We took a chemical genetics approach to show that this compound induced host autophagy mechanisms and the formation of autophagic structures via AMPK activation and the release of the host protein eIF5A which is sequestered at the parasite surface. The sequestration of host eIF5A to the parasite surface offers a strategy to escape elimination by autophagic mechanisms. These results show how intracellular pathogens can avoid host defense mechanisms and identify a new anti-Theileria drug that induces autophagy to target parasite removal
    corecore