6 research outputs found

    MicroMundo@UPorto: an experimental microbiology project fostering student's antimicrobial resistance awareness and personal and social development COMMENT

    No full text
    Antimicrobial resistance (AMR) is a global societal challenge requiring the contribution of professionals along with general community citizens for their containment. Portugal is one of the European countries where a lack of knowledge on the correct use of antimicrobials and AMR problematic is preeminent. Moreover, youth demotivation to pursue science careers is emerging. To address these problems an innovative experimental service-learning pedagogical strategy, MicroMundo@UPorto, was implemented in Portugal during 2018 through University of Porto as a partner of the global Citizen Science project Tiny Earth' responding to the AMR crisis. In this first edition of MicroMundo@UPorto, university students (n = 41; Pharmaceutical Sciences and Nutrition Sciences) organized in eight teams tutored by university professors/researchers (n = 13) on Microbiology and AMR theoretical and practical aspects as well on communication skills to enable their guidance of younger school students (n = 140/3 schools) in experiments to discover antimicrobial-producing microorganisms while exploring the soil microbial diversity. Post-survey-based evaluation revealed that this project allowed university students to acquire diverse personal, social and scientific skills while increasing AMR awareness, in the One-Health perspective, and interest for science in school students. This University to Society approach can be successfully extended across Portugal and for education in Microbiology in general, with benefits for the future generations contributing to socially responsible and scientifically-literate citizens

    Lactobacillus mulieris sp. nov., a new species of Lactobacillus delbrueckii group

    Get PDF
    One Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, and coccobacilli-shaped strain, designated c10Ua161MT, was isolated from a urine sample from a reproductive-age healthy woman. Comparative 16S rRNA gene sequence analysis indicated that strain c10Ua161MT belonged to the genus Lactobacillus . Phylogenetic analysis based on pheS and rpoA gene sequences strongly supported a clade encompassing strains c10Ua161MT and eight other strains from public databases, distinct from currently recognized species of the genus Lactobacillus. In silico Average Nucleotide Identity (ANI) and Genome-to-Genome Distance Calculator (GGDC), showed 87.9 and 34.3 % identity to the closest relative Lactobacillus jensenii , respectively. The major fatty acids of strain c10Ua161MT were C18 : 1ω9c (65.0%), C16 : 0 (17.8%), and summed feature 8 (10.2 %; comprising C18 : 1ω7c, and/or C18 : 1ω6c). The DNA G+C content of the strains is 34.2 mol%. On the basis of data presented here, strain c10Ua161MT represents a novel species of the genus Lactobacillus , for which the name Lactobacillus mulieris sp. nov. is proposed. The type strain is c10Ua161MT (=CECT 9755T=DSM 108704T).info:eu-repo/semantics/publishedVersio
    corecore