81 research outputs found

    PLoS Genet

    Get PDF
    The retinoid X receptors (RXRs) are ligand-activated transcription factors which heterodimerize with a number of nuclear hormone receptors, thereby controlling a variety of (patho)-physiological processes. Although synthetic RXR ligands are developed for the treatment of various diseases, endogenous ligand(s) for these receptors have not been conclusively identified. We show here that mice lacking cellular retinol binding protein (Rbp1-/-) display memory deficits reflecting compromised RXR signaling. Using HPLC-MS and chemical synthesis we identified in Rbp1-/- mice reduced levels of 9-cis-13,14-dihydroretinoic acid (9CDHRA), which acts as an RXR ligand since it binds and transactivates RXR in various assays. 9CDHRA rescues the Rbp1-/- phenotype similarly to a synthetic RXR ligand and displays similar transcriptional activity in cultured human dendritic cells. High endogenous levels of 9CDHRA in mice indicate physiological relevance of these data and that 9CDHRA acts as an endogenous RXR ligand

    Copy number variation of microRNA genes in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are important genetic elements that regulate the expression of thousands of human genes. Polymorphisms affecting miRNA biogenesis, dosage and target recognition may represent potentially functional variants. The functional consequences of single nucleotide polymorphisms (SNPs) within critical miRNA sequences and outside of miRNA genes were previously demonstrated using both experimental and computational methods. However, little is known about how copy number variations (CNVs) affect miRNA genes.</p> <p>Results</p> <p>In this study, we analyzed the co-localization of all miRNA <it>loci </it>with known CNV regions. Using bioinformatic tools we identified and validated 209 copy number variable miRNA genes (CNV-miRNAs) in CNV regions deposited in Database of Genomic Variations (DGV) and 11 CNV-miRNAs in two sets of CNVs defined as highly polymorphic. We propose potential mechanisms of CNV-mediated variation of functional copies of miRNAs (dosage) for different types of CNVs overlapping miRNA genes. We also showed that, consistent with their essential biological functions, miRNA <it>loci </it>are underrepresented in highly polymorphic and well-validated CNV regions.</p> <p>Conclusion</p> <p>We postulate that CNV-miRNAs are potential functional variants and should be considered high priority candidate variants in genotype-phenotype association studies.</p

    The Role of Dicer Protein Partners in the Processing of MicroRNA Precursors

    Get PDF
    One of the cellular functions of the ribonuclease Dicer is to process microRNA precursors (pre-miRNAs) into mature microRNAs (miRNAs). Human Dicer performs this function in cooperation with its protein partners, AGO2, PACT and TRBP. The exact role of these accessory proteins in Dicer activity is still poorly understood. In this study, we used the northern blotting technique to investigate pre-miRNA cleavage efficiency and specificity after depletion of AGO2, PACT and TRBP by RNAi. The results showed that the inhibition of either Dicer protein partner substantially affected not only miRNA levels but also pre-miRNA levels, and it had a rather minor effect on the specificity of Dicer cleavage. The analysis of the Dicer cleavage products generated in vitro revealed the presence of a cleavage intermediate when pre-miRNA was processed by recombinant Dicer alone. This intermediate was not observed during pre-miRNA cleavage by endogenous Dicer. We demonstrate that AGO2, PACT and TRBP were required for the efficient functioning of Dicer in cells, and we suggest that one of the roles of these proteins is to assure better synchronization of cleavages triggered by two RNase III domains of Dicer

    Leucine-Rich Repeat Kinase 2 Modulates Retinoic Acid-Induced Neuronal Differentiation of Murine Embryonic Stem Cells

    Get PDF
    Background: Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of Parkinson’s disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment. Methodology/Principal Findings: In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/2 cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2deficient stem cells in culture. Conclusion/Significance: Parkinson’s disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in othe

    The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression

    Get PDF
    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues

    Hydrostatic and osmotic pressure study of the RNA hydration

    Get PDF
    The tertiary structure of nucleic acids results from an equilibrium between electrostatic interactions of phosphates, stacking interactions of bases, hydrogen bonds between polar atoms and water molecules. Water interactions with ribonucleic acid play a key role in its structure formation, stabilization and dynamics. We used high hydrostatic pressure and osmotic pressure to analyze changes in RNA hydration. We analyzed the lead catalyzed hydrolysis of tRNAPhe from S. cerevisiae as well as hydrolytic activity of leadzyme. Pb(II) induced hydrolysis of the single phosphodiester bond in tRNAPhe is accompanied by release of 98 water molecules, while other molecule, leadzyme releases 86

    Overexpression of transmembrane protein 168 in the mouse nucleus accumbens induces anxiety and sensorimotor gating deficit

    Get PDF
    Transmembrane protein 168 (TMEM168) comprises 697 amino acid residues, including some putative transmembrane domains. It is reported that TMEM168 controls methamphetamine (METH) dependence in the nucleus accumbens (NAc) of mice. Moreover, a strong link between METH dependence-induced adaptive changes in the brain and mood disorders has been evaluated. In the present study, we investigated the effects of accumbal TMEM168 in a battery of behavioral paradigms. The adeno-associated virus (AAV) Tmem168 vector was injected into the NAc of C57BL/6J mice (NAc-TMEM mice). Subsequently, the accumbal TMEM168 mRNA was increased approximately by seven-fold when compared with the NAc-Mock mice (controls). The NAc-TMEM mice reported no change in the locomotor activity, cognitive ability, social interaction, and depression-like behaviors; however, TMEM168 overexpression enhanced anxiety in the elevated-plus maze and light/dark box test. The increased anxiety was reversed by pretreatment with the antianxiety drug diazepam (0.3 mg/kg i.p.). Moreover, the NAc-TMEM mice exhibited decreased prepulse inhibition (PPI) in the startle response test, and the induced schizophrenia-like behavior was reversed by pretreatment with the antipsychotic drug risperidone (0.01 mg/kg i.p.). Furthermore, accumbal TMEM168 overexpression decreased the basal levels of extracellular GABA in the NAc and the high K+ (100 mM)-stimulated GABA elevation; however, the total contents of GABA in the NAc remained unaffected. These results suggest that the TMEM168-regulated GABAergic neuronal system in the NAc might become a novel target while studying the etiology of anxiety and sensorimotor gating deficits

    Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target

    Get PDF
    This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases
    corecore