15 research outputs found

    A genome-wide DNA methylation signature for SETD1B-related syndrome

    Get PDF
    SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients

    A genome-wide DNA methylation signature for SETD1B-related syndrome

    Get PDF
    SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients

    Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis

    Get PDF
    Background: Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. Methods: A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. Results: In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. Conclusions: MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3–5 years to evaluate the research advancements and update this guidance as needed

    Genome-wide methylation profiling of Beckwith Wiedemann syndrome patients without molecular confirmation after routine diagnostics

    No full text
    Beckwith-Wiedemann syndrome (BWS) is caused due to the disturbance of imprinted genes at chromosome 11p15. The molecular confirmation of this syndrome is possible in approximately 85% of the cases, whereas in the remaining 15% of the cases, the underlying defect remains unclear. The goal of our research was to identify new epigenetic loci related to BWS. We studied a group of 25 patients clinically diagnosed with BWS but without molecular conformation after DNA diagnostics and performed a whole genome methylation analysis using the HumanMethylation450 Array (Illumina).We found hypermethylation throughout the methylome in two BWS patients. The hypermethylated sites in these patients overlapped and included both non-imprinted and imprinted regions. This finding was not previously described in any BWS-diagnosed patient.Furthermore, one BWS patient exhibited aberrant methylation in four maternally methylated regions—IGF1R, NHP2L1, L3MBTL, and ZDBF2—that overlapped with the differentially methylated regions found in BWS patients with multi-locus imprinting disturbance (MLID). This finding suggests that the BWS phenotype can result from MLID without detectable methylation defects in the primarily disease-associated loci (11p15). Another patient manifested small but significant aberrant methylation in disease-associated loci at 11p near H19, possibly confirming the diagnosis in this patient

    Oxytocin receptor gene methylation in male and female PTSD patients and trauma-exposed controls

    No full text
    Oxytocin receptor gene (OXTR) DNA-methylation levels have been associated with trauma-exposure, mood- and anxiety disorders, and social processes relevant to posttraumatic stress disorder (PTSD). We hypothesized that OXTR methylation may play a role in the neurobiological underpinnings of PTSD. In the current study, we compared OXTR methylation between PTSD patients (n = 31, 14 females) and trauma-exposed controls (n = 36, 19 females). Additionally, the association between OXTR methylation and PTSD symptom severity and amygdala reactivity to an emotional faces task was assessed, as a neural hallmark of PTSD. DNA-methylation was investigated in the CpG island located at exon 3 of the OXTR, previously associated with OXTR expression. We observed a significant interaction between PTSD-status, sex and CpG-position on methylation levels. Post-hoc testing revealed that methylation levels at two specific CpG-sites were significantly higher in PTSD females compared to female trauma-exposed controls and PTSD males (CpGs Chr3:8809437, Chr3:8809413). No significant differences in methylation were observed between male PTSD patients and controls. Furthermore, within PTSD females, methylation in these CpG-sites was positively associated with anhedonia symptoms and with left amygdala responses to negative emotional faces, although this was no longer significant after stringent correction for multiple-comparisons. Though the modest size of the current sample is an important limitation, we are the first to report on OXTR methylation in PTSD, replicating previously observed (sex-specific) associations of OXTR methylation with other psychiatric disorders
    corecore