19 research outputs found

    A characterization of trees with equal 2-domination and 2-independence numbers

    Full text link
    A set SS of vertices in a graph GG is a 22-dominating set if every vertex of GG not in SS is adjacent to at least two vertices in SS, and SS is a 22-independent set if every vertex in SS is adjacent to at most one vertex of SS. The 22-domination number γ2(G)\gamma_2(G) is the minimum cardinality of a 22-dominating set in GG, and the 22-independence number α2(G)\alpha_2(G) is the maximum cardinality of a 22-independent set in GG. Chellali and Meddah [{\it Trees with equal 22-domination and 22-independence numbers,} Discussiones Mathematicae Graph Theory 32 (2012), 263--270] provided a constructive characterization of trees with equal 22-domination and 22-independence numbers. Their characterization is in terms of global properties of a tree, and involves properties of minimum 22-dominating and maximum 22-independent sets in the tree at each stage of the construction. We provide a constructive characterization that relies only on local properties of the tree at each stage of the construction.Comment: 17 pages, 4 figure

    Hat problem on a graph

    Get PDF
    The topic of this thesis is the hat problem. In this problem, a team of n players enters a room, and a blue or red hat is randomly placed on the head of each player. Every player can see the hats of all of the other players but not his own. Then each player must simultaneously guess the color of his own hat or pass. The team wins if at least one player guesses his hat color correctly and no one guesses his hat color wrong, otherwise the team loses. The aim is to maximize the probability of winning. This thesis is based on publications, which form the second chapter. In the first chapter we give an overview of the published results. In Section 1.1 we introduce to the hat problem and the hat problem on a graph, where vertices correspond to players, and a player can see the adjacent players. To the hat problem on a graph we devote the next few sections. First, we give some fundamental theorems about the problem. Then we solve the hat problem on trees, cycles, and unicyclic graphs. Next we consider the hat problem on graphs with a universal vertex. We also investigate the problem on graphs with a neighborhood-dominated vertex. In addition, we consider the hat problem on disconnected graphs. Next we investigate the problem on graphs such that the only known information are degrees of vertices. We also present Nordhaus-Gaddum type inequalities for the hat problem on a graph. In Section 1.6 we investigate the hat problem on directed graphs. The topic of Section 1.7 is the generalized hat problem with q >= 2 colors. A modified hat problem is considered in Section 1.8. In this problem there are n >= 3 players and two colors. The players do not have to guess their hat colors simultaneously and we modify the way of making a guess. We give an optimal strategy for this problem which guarantees the win. Applications of the hat problem and its connections to different areas of science are presented in Section 1.9. We also give there a comprehensive list of variations of the hat problem considered in the literature

    A modified hat problem

    No full text
    The topic of our paper is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultane- ously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of a win. There are known many variations of the hat problem. In this paper we consi- der a variation in which there are n≥3n\geq 3 players, and blue and red hats. Players do not have to guess their hat colors simultaneously. In this variation of the hat problem players guess their hat colors by coming to the basket and throwing the proper card into it. Every player has got two cards with his name and the sentence ``I have got a red hat'' or ``I have got a blue hat''. If someone wants to resign from answering, then he does not do anything. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. Is there a strategy such that the team always succeeds? We give an optimal strategy for the problem which always succeeds. Additionally, we prove in which step the team wins using the strategy. We also prove what is the greatest possible number of steps that are needed for the team to win using the strategy

    c©2010 Dixie W Publishing Corporation, U. S. A. An Alternative Proof of a Lower Bound on the 2-Domination Number of a Tree

    Get PDF
    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in D has a at least two neighbors in D. The 2-domination number of a graph G, denoted by γ2(G), is the minimum cardinality of a 2-dominating set of G. Fink and Jacobson [n-domination in graphs, Graph theory with applications to algorithms and computer science, Wiley, New York, 1985, 283−300] established the following lower bound on the 2-domination number of a tree in term of its order, γ2(T) ≥ (n + 1)/2. We give an alternative proof of this bound

    The hat problem on a union of disjoint graphs

    No full text
    The topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning. In this version every player can see everybody excluding himself. We consider such a problem on a graph, where vertices correspond to players, and a player can see each player to whom he is connected by an edge. The solution of the hat problem is known for cycles and bipartite graphs. We investigate the problem on a union of disjoint graphs
    corecore