16 research outputs found

    Maria Skłodowska-Curie, a brilliant child and a talented teacher

    Get PDF
    Not availableNo disponibl

    Raman, surface-enhanced Raman, and density functional theory characterization of (diphenylphosphoryl)(pyridin-2-, -3-, and -4-yl)methanol

    No full text
    This work presents near-infrared Raman spectroscopy (FT-RS) and surface-enhanced Raman scattering (SERS) studies of three pyridine-α-hydroxymethyl biphenyl phosphine oxide isomers: (diphenylphosphoryl)(pyridin-2-yl)methanol (α-Py), (diphenylphosphoryl)(pyridin-3-yl)methanol (β-Py), and (diphenylphosphoryl)(pyridin-4-yl)methanol (γ-Py) adsorbed onto colloidal and roughened in oxidation–reduction cycles silver surfaces. The molecular geometries in the equilibrium state and vibrational frequencies were calculated by density functional theory (DFT) at the B3LYP 6-311G(df,p) level of theory. The results imply that the most stable structure of the investigated molecules is a dimer created by two intermolecular hydrogen bonds between the H atom of the α-hydroxyl group (in up (HOU) or down (HOD) stereo bonds position) and the O atom of tertiary phosphine oxide (═O) of the two monomers. Comparison the FT-RS spectra with the respective SERS spectra allowed us to predict the orientation of the hydroxyphosphonate derivatives of pyridine that depends upon both the position of the substituent relative to the ring N atom (in α-, β-, and γ-position, respectively) and the type of silver substrate

    Adduct formed by chromium trioxide and zwitterionic quinolinic acid

    Get PDF
    Chromium trioxide forms an adduct with zwitterionic quinolinic acid. The structure of the product was found to be (quinolinium-3- carboxylato-O)trioxidochromium(VI), determined by single-crystal X-ray diffraction methods. To evaluate the bonding properties of the compound, its structure was optimized at the B3LYP/6-311G* level of theory. The electronic characteristics were investigated by topological methods applied to the total charge density in various model compounds including the title compound, title compound with a HF molecule presenting a hydrogen bonding and anionic moiety. Calculated aromaticity indices indicate that the quinolinic rings tend to conserve their degree of aromaticity against hydrogen bonding. However, when there is hydrogen bonding involving an N-H bond or when the quinolinium zwitterion is deprotonated, there are clear changes in the interaction between chromium trioxide and the quinolinic moiety

    Raman, Surface-Enhanced Raman, and Density Functional Theory Characterization of (Diphenylphosphoryl)(pyridin-2‑, -3‑, and -4-yl)methanol

    No full text
    This work presents near-infrared Raman spectroscopy (FT-RS) and surface-enhanced Raman scattering (SERS) studies of three pyridine-α-hydroxymethyl biphenyl phosphine oxide isomers: (diphenylphosphoryl)­(pyridin-2-yl)­methanol (α-Py), (diphenylphosphoryl)­(pyridin-3-yl)­methanol (β-Py), and (diphenylphosphoryl)­(pyridin-4-yl)­methanol (γ-Py) adsorbed onto colloidal and roughened in oxidation–reduction cycles silver surfaces. The molecular geometries in the equilibrium state and vibrational frequencies were calculated by density functional theory (DFT) at the B3LYP 6-311G­(df,p) level of theory. The results imply that the most stable structure of the investigated molecules is a dimer created by two intermolecular hydrogen bonds between the H atom of the α-hydroxyl group (in up (HO<sub>U</sub>) or down (HO<sub>D</sub>) stereo bonds position) and the O atom of tertiary phosphine oxide (O) of the two monomers. Comparison the FT-RS spectra with the respective SERS spectra allowed us to predict the orientation of the hydroxyphosphonate derivatives of pyridine that depends upon both the position of the substituent relative to the ring N atom (in α-, β-, and γ-position, respectively) and the type of silver substrate
    corecore