4 research outputs found
Biostimulation of grapevine and wheat : mode of action and possible agronomic uses
International audienc
In situ Phenotyping of Grapevine Root System Architecture by 2D or 3D Imaging: Advantages and Limits of Three Cultivation Methods
International audienceThe root system plays an essential role in the development and physiology of the plant, as well as in its response to various stresses. However, it is often insufficiently studied, mainly because it is difficult to visualize. For grapevine, a plant of major economic interest, there is a growing need to study the root system, in particular to assess its resistance to biotic and abiotic stresses, understand the decline that may affect it, and identify new ecofriendly production systems. In this context, we have evaluated and compared three distinct growing methods (hydroponics, plane, and cylindric rhizotrons) in order to describe relevant architectural root traits of grapevine cuttings (mode of grapevine propagation), and also two 2D- (hydroponics and rhizotron) and one 3D- (neutron tomography) imaging techniques for visualization and quantification of roots. We observed that hydroponics tubes are a system easy to implement but do not allow the direct quantification of root traits over time, conversely to 2D imaging in rhizotron. We demonstrated that neutron tomography is relevant to quantify the root volume. We have also produced a new automated analysis method of digital photographs, adapted for identifying adventitious roots as a feature of root architecture in rhizotrons. This method integrates image segmentation, skeletonization, detection of adventitious root skeleton, and adventitious root reconstruction. Although this study was targeted to grapevine, most of the results obtained could be extended to other plants propagated by cuttings. Image analysis methods could also be adapted to characterization of the root system from seedlings
Biostimulation of grapevine : mode of action and possible agronomic uses
National audienceAlthough there is a growing interest for the use of biostimulants in agriculture, only few methods allowing a precise description of their effects on plants have been reported. In the IRIS+ FUI project, two major and highly different worldwide crops, wheat (annual, monocotyledon) and grapevine (perennial, broadleaf), were chosen to deepen our knowledge of such compounds and explore their potential additional interest. The first objective is to develop in greenhouse conditions, a panel of tools and methods to study the impact of a series of biostimulants on the development (aerial and root system biomass measurements and corresponding phenotyping), and the physiology (photosynthetic activity, primary and secondary metabolites) of both plants. The second objective is to check if biostimulants, via their effects on the plant physiology, could be associated to resistance inducer-based control strategies against fungal aerial diseases. Unlike fungicides which directly target path! ogens, resistance inducers request plant metabolism dedicated to defense, a fitnesscostly process. Hence, an improvement of both crops' physiological status by biostimulation is expected to increase its responsiveness to resistance inducer application
An ethoxylated surfactant enhances the penetration of the sulfated laminarin through leaf cuticle and stomata, leading to increased induced resistance against grapevine downy mildew
International audienceSome β-1,3-glucans and particularly sulfated laminarin (PS3) are known as resistance inducers (RIs) in grapevine against the downy mildew. However, their efficacy in vineyard is still often too low, which might be caused by a limited penetration through the leaf cuticle following spray application. We used (14) C-sucrose uptake experiments with grapevine leaves in order to select a surfactant as saccharide penetration enhancer. Our results showed that though sucrose foliar uptake was low, it was strongly enhanced by Dehscofix CO125 (DE), a highly ethoxylated surfactant. Fluorescent saccharides were then produced and laser scanning microscopy was used to analyze their foliar diffusion pattern in Arabidopsis thaliana and grapevine. Interestingly, sucrose and PS3 were seemingly able to penetrate the leaf cuticle only when formulated with DE. Diffusion could preferentially occur via stomata, anticlinal cell walls and trichomes. In grapevine, PS3 penetration rate was much higher on the stomateous abaxial surface of the leaf than on the adaxial surface. Finally, using DE allowed a higher level of downy mildew control by PS3, which corroborated diffusion observations. Our results have practical consequences for the improvement of treatments with saccharidic inducers on grape. That is, formulation of such RIs plays a critical role for their cuticular diffusion and consequently their efficacy. Also, spray application should preferentially target the abaxial surface of the leaves in order to maximize their penetratio