32 research outputs found

    Pharmacological Modulation of Three Modalities of CA1 Hippocampal Long-Term Potentiation in the Ts65Dn Mouse Model of Down Syndrome

    Get PDF
    The Ts65Dn mouse is the most studied animal model of Down syndrome. Past research has shown a significant reduction in CA1 hippocampal long-term potentiation (LTP) induced by theta-burst stimulation (TBS), but not in LTP induced by high-frequency stimulation (HFS), in slices from Ts65Dn mice compared with euploid mouse-derived slices. Additionally, therapeutically relevant doses of the drug memantine were shown to rescue learning and memory deficits in Ts65Dn mice. Here, we observed that 1 mu M memantine had no detectable effect on HFS-induced LTP in either Ts65Dn- or control-derived slices, but it rescued TBS-induced LTP in Ts65Dn-derived slices to control euploid levels. Then, we assessed LTP induced by four HFS (4xHFS) and found that this form of LTP was significantly depressed in Ts65Dn slices when compared with LTP in euploid control slices. Memantine, however, did not rescue this phenotype. Because 4xHFS-induced LTP had not yet been characterized in Ts65Dn mice, we also investigated the effects of picrotoxin, amyloid beta oligomers, and soluble recombinant human prion protein (rPrP) on this form of LTP. Whereas >= 10 mu M picrotoxin increased LTP to control levels, it also caused seizure-like oscillations. Neither amyloid beta oligomers nor rPrP had any effect on 4xHFS-induced LTP in Ts65Dn-derived slices.Alana USA Foundation [124124]Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Awakening AngelsNIH [NS083687]Case Western Reserve Univ, Dept Pediat, Div Pediat Neurol, Cleveland, OH 44106 USAUniv Fed Sao Paulo, Cardiol, Postgrad Program Med, BR-04024002 Sao Paulo, SP, BrazilCase Western Reserve Univ, Dept Physiol & Biophys, Cleveland, OH 44106 USACase Western Reserve Univ, Dept Psychiat, Cleveland, OH 44106 USAUniv Fed Sao Paulo, Cardiol, Postgrad Program Med, BR-04024002 Sao Paulo, SP, BrazilCAPES: NS083687Web of Scienc

    Antimicrobial Activity of Human Prion Protein Is Mediated by Its N-Terminal Region

    Get PDF
    BACKGROUND: Cellular prion-related protein (PrP(c)) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c), and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c) could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the "classical" human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking) liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-alpha in vitro. CONCLUSIONS: The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense

    Conformational Dynamics in the Core of Human Y145Stop Prion Protein Amyloid Probed by Relaxation Dispersion NMR

    No full text
    International audienceMicrosecond to millisecond timescale backbone dynamics of the amyloid core residues in Y145Stop human prion protein (PrP) fibrils were investigated by using 15 N rotating frame (R1r) relaxation dispersion solid-state nuclear magnetic resonance spectroscopy over a wide range of spin-lock fields. Numerical simulations enabled the experimental relaxation dispersion profiles for most of the fibril core residues to be modelled by using a two-state exchange process with a common exchange rate of 1,000 s-1 , corresponding to protein backbone motion on the timescale of 1 ms, and an excited-state population of 2%. We also found that the relaxation dispersion profiles for several amino acids positioned near the edges of the most structured regions of the amyloid core were better modelled by assuming somewhat higher excited-state populations (~5-15%) and faster exchange rate constants, corresponding to protein backbone motions on the timescale of ~100-300 µs. The slow backbone dynamics of the core residues were evaluated in the context of the structural model of human Y145Stop PrP amyloid

    Soluble Prion Protein Binds Isolated Low Molecular Weight Amyloid‑β Oligomers Causing Cytotoxicity Inhibition

    No full text
    A growing number of observations indicate that soluble amyloid-β (Aβ) oligomers play a major role in Alzheimer’s disease. Recent studies strongly suggest that at least some of the neurotoxic effects of these oligomers are mediated by cellular, membrane-anchored prion protein and that Aβ neurotoxicity can be inhibited by soluble recombinant prion protein (rPrP) and its fragments. However, the mechanism by which rPrP interacts with Aβ oligomers and prevents their toxicity is largely unknown, and studies in this regard are hindered by the large structural heterogeneity of Aβ oligomers. To overcome this difficulty, here we used photoinduced cross-linking of unmodified proteins (PICUP) to isolate well-defined oligomers of Aβ42 and characterize these species with regard to their cytotoxicity and interaction with rPrP, as well the mechanism by which rPrP inhibits Aβ42 cytotoxicity. Our data shows that the addition of rPrP to the assembling Aβ42 results in a shift in oligomer size distribution, decreasing the population of toxic tetramers and higher order oligomers and increasing the population of nontoxic (and possibly neuroprotective) monomers. Isolated oligomeric species of Aβ42 are cytotoxic to primary neurons and cause permeation of model lipid bilayers. These toxic effects, which are oligomer size-dependent, can be inhibited by the addition of rPrP, and our data suggest potential mechanisms of this inhibitory action. This insight should help in current efforts to develop PrP-based therapeutics for Alzheimer’s disease

    Artificial strain of human prions created in vitro

    No full text
    The molecular mechanism that determines under physiological conditions transmissibility of the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD) is unknown. We report the synthesis of new human prion from the recombinant human prion protein expressed in bacteria in reaction seeded with sCJD MM1 prions and cofactor, ganglioside GM1. These synthetic human prions were infectious to transgenic mice expressing non-glycosylated human prion protein, causing neurologic dysfunction after 459 and 224 days in the first and second passage, respectively. The neuropathology, replication potency, and biophysical profiling suggest that a novel, particularly neurotoxic human prion strain was created. Distinct biological and structural characteristics of our synthetic human prions suggest that subtle changes in the structural organization of critical domains, some linked to posttranslational modifications of the pathogenic prion protein (PrPSc), play a crucial role as a determinant of human prion infectivity, host range, and targetting of specific brain structures in mice models

    Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection in Vivo

    Get PDF
    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are associated with the conformational conversion of the cellular prion protein, PrPC, into a protease-resistant form, PrPSc. Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrPC has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrPC→PrPSc conformational transition, and they suggest an approach to the treatment of prion diseases
    corecore