129 research outputs found

    Kinetics of Topological Stone-Wales Defect Formation in Single Walled Carbon

    Get PDF
    Topological Stone-Wales defect in carbon nanotubes plays a central role in plastic deformation, chemical functionalization, and superstructure formation. Here, we systematically investigate the formation kinetics of such defects within density functional approach coupled with the transition state theory. We find that both the formation and activation energies depend critically on the nanotube chairality, diameter, and defect orientation. The microscopic origin of the observed dependence is explained with curvature induced rehybridization in nanotube. Surprisingly, the kinetic barrier follows an empirical Br{\o}nsted-Evans-Polanyi type correlation with the corresponding formation energy, and can be understood in terms of overlap between energy-coordinate parabolas representing the structures with and without the defect. Further, we propose a possible route to substantially decrease the kinetic activation barrier. Such accelerated rates of defect formation are desirable in many novel electronic, mechanical and chemical applications, and also facilitate the formation of three-dimensional nanotube superstructures.Comment: 10 pages, Supporting information, The Journal of Physical Chemistry C (2015

    Mechanical fluidity of fully suspended biological cells

    Get PDF
    Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity---hysteresivity normalized to the extremes of an elastic solid or a viscous liquid---can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance vs. time, complex modulus vs. frequency, and phase lag vs. frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences around a time scale of 1 s. We find that fluidity estimates are consistent in the time and the frequency domains under a structural damping (power-law or fractional derivative)model, but not under an equivalent-complexity lumpedcomponent (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical crosslinking, we find that adenosine triphosphate (ATP) depletion in the cell does not measurably alter the parameter, and thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature---now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion

    Mechanical Strain Promotes Oligodendrocyte Differentiation by Global Changes of Gene Expression.

    Get PDF
    Differentiation of oligodendrocyte progenitor cells (OPC) to oligodendrocytes and subsequent axon myelination are critical steps in vertebrate central nervous system (CNS) development and regeneration. Growing evidence supports the significance of mechanical factors in oligodendrocyte biology. Here, we explore the effect of mechanical strains within physiological range on OPC proliferation and differentiation, and strain-associated changes in chromatin structure, epigenetics, and gene expression. Sustained tensile strain of 10-15% inhibited OPC proliferation and promoted differentiation into oligodendrocytes. This response to strain required specific interactions of OPCs with extracellular matrix ligands. Applied strain induced changes in nuclear shape, chromatin organization, and resulted in enhanced histone deacetylation, consistent with increased oligodendrocyte differentiation. This response was concurrent with increased mRNA levels of the epigenetic modifier histone deacetylase Hdac11. Inhibition of HDAC proteins eliminated the strain-mediated increase of OPC differentiation, demonstrating a role of HDACs in mechanotransduction of strain to chromatin. RNA sequencing revealed global changes in gene expression associated with strain. Specifically, expression of multiple genes associated with oligodendrocyte differentiation and axon-oligodendrocyte interactions was increased, including cell surface ligands (Ncam, ephrins), cyto- and nucleo-skeleton genes (Fyn, actinins, myosin, nesprin, Sun1), transcription factors (Sox10, Zfp191, Nkx2.2), and myelin genes (Cnp, Plp, Mag). These findings show how mechanical strain can be transmitted to the nucleus to promote oligodendrocyte differentiation, and identify the global landscape of signaling pathways involved in mechanotransduction. These data provide a source of potential new therapeutic avenues to enhance OPC differentiation in vivo.We gratefully acknowledge funding from the National Multiple Sclerosis Society (RG4855A1/1), the Human Frontiers Science Program (RGP0015/2009-C), and the National Research Foundation of Singapore through the Singapore-MIT Alliance for Research and Technology (SMART), BioSystems and Micromechanics (BioSyM) interdisciplinary research group

    Unintended consequences: Why carbonation can dominate in microscale hydration of calcium silicates

    Get PDF
    The initial microscale mechanisms and materials interfacial process responsible for hydration of calcium silicates are poorly understood even in model systems. The lack of a measured microscale chemical signature has confounded understanding of growth mechanisms and kinetics for microreaction volumes. Here, we use Raman and optical spectroscopies to quantify hydration and environmental carbonation of tricalcium silicates across length and time scales. We show via spatially resolved chemical analysis that carbonate formation during the initial byproduct in microscale reaction volumes is significant, even for subambient CO2 levels. We propose that the competition between carbonation and hydration is enhanced strongly in microscale reaction volumes by increased surface-to-volume ratio relative to macroscale volumes, and by increased concentration of dissolved Ca2+ ions under poor hydration conditions that promote evaporation. This in situ analysis provides the first direct correlation between microscale interfacial hydration and carbonation environments and chemically defined reaction products in cementitious materials.United States. Department of Homeland Security. Science and Technology DirectorateMIT Concrete Sustainability HubPortland Cement AssociationReady Mixed Concrete (RMC) Research & Education Foundatio

    Calpain- and talin-dependent control of microvascular pericyte contractility and cellular stiffness

    Get PDF
    Pericytes surround capillary endothelial cells and exert contractile forces modulating microvascular tone and endothelial growth. We previously described pericyte contractile phenotype to be Rho GTPase- and α-smooth muscle actin (αSMA)-dependent. However, mechanisms mediating adhesion-dependent shape changes and contractile force transduction remain largely equivocal. We now report that the neutral cysteine protease, calpain, modulates pericyte contractility and cellular stiffness via talin, an integrin-binding and F-actin associating protein. Digital imaging and quantitative analyses of living cells reveal significant perturbations in contractile force transduction detected via deformation of silicone substrata, as well as perturbations of mechanical stiffness in cellular contractile subdomains quantified via atomic force microscope (AFM)-enabled nanoindentation. Pericytes overexpressing GFP-tagged talin show significantly enhanced contractility (~ two-fold), which is mitigated when either the calpain-cleavage resistant mutant talin L432G or vinculin are expressed. Moreover, the cell-penetrating, calpain-specific inhibitor termed CALPASTAT reverses talin-enhanced, but not Rho GTP-dependent, contractility. Interestingly, our analysis revealed that CALPASTAT, but not its inactive mutant, alters contractile cell-driven substrata deformations while increasing mechanical stiffness of subcellular contractile regions of these pericytes. Altogether, our results reveal that calpain-dependent cleavage of talin modulates cell contractile dynamics, which in pericytes may prove instrumental in controlling normal capillary function or microvascular pathophysiology.National Science Foundation (U.S.) (CAREER Award)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    Point defect concentrations in metastable Fe-C alloys

    Full text link
    Point defect species and concentrations in metastable Fe-C alloys are determined using density functional theory and a constrained free-energy functional. Carbon interstitials dominate unless iron vacancies are in significant excess, whereas excess carbon causes greatly enhances vacancy concentration. Our predictions are amenable to experimental verification; they provide a baseline for rationalizing complex microstructures known in hardened and tempered steels, and by extension other technological materials created by or subjected to extreme environments

    Examining the Lateral Displacement of HL60 Cells Rolling on Asymmetric P-Selectin Patterns

    Get PDF
    Author Manuscript 2011 July 4.The lateral displacement of cells orthogonal to a flow stream by rolling on asymmetrical receptor patterns presents a new opportunity for the label-free separation and analysis of cells. Understanding the nature of cell rolling trajectories on such substrates is necessary to the engineering of substrates and the design of devices for cell separation and analysis. Here, we investigate the statistical nature of cell rolling and the effect of pattern geometry and flow shear stress on cell rolling trajectories using micrometer-scale patterns of biomolecular receptors with well-defined edges. Leukemic myeloid HL60 cells expressing the PSGL-1 ligand were allowed to flow across a field of patterned lines fabricated using microcontact printing and functionalized with the P-selectin receptor, leveraging both the specific adhesion of this ligand−receptor pair and the asymmetry of the receptor pattern inclination angle with respect to the fluid shear flow direction (α = 5, 10, 15, and 20°). The effects of the fluid shear stress magnitude (τ = 0.5, 1, 1.5, and 2.0 dyn/cm[superscript 2]), α, and P-selectin incubation concentration were quantified in terms of the rolling velocity and edge tracking length. Rolling cells tracked along the inclined edges of the patterned lines before detaching and reattaching on another line. The detachment of rolling cells after tracking along the edge was consistent with a Poisson process of history-independent interactions. Increasing the edge inclination angle decreased the edge tracking length in an exponential manner, contrary to the shear stress magnitude and P-selectin incubation concentration, which did not have a significant effect. On the basis of these experimental data, we constructed an empirical model that predicted the occurrence of the maximum lateral displacement at an edge angle of 7.5°. We also used these findings to construct a Monte Carlo simulation for the prediction of rolling trajectories of HL60 cells on P-selectin-patterned substrates with a specified edge inclination angle. The prediction of lateral displacement in the range of 200 μm within a 1 cm separation length supports the feasibility of label-free cell separation via asymmetric receptor patterns in microfluidic devices.Deshpande Center for Technological InnovationNational Science Foundation (U.S.) (CAREER Award 0952493)National Institutes of Health (U.S.) (Grant DE019191)National Institutes of Health (U.S.) (Grant HL095722)National Institutes of Health (U.S.) (Grant HL097172)American Heart Association (Grant 0970178N

    Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage

    Get PDF
    Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit cyclic volumetric expansion upon reversible ion transport. Such chemomechanical coupling is typically far from thermodynamic equilibrium, and thus is challenging to quantify experimentally and computationally. In situ measurements and atomistic simulations are under rapid development to explore how this coupling can be used to potentially improve both device performance and durability. Here, we review the commonalities of coupling between electrochemical and mechanical states in fuel cell and battery materials, illustrating with specific cases the progress in materials processing, in situ characterization, and computational modeling and simulation. We also highlight outstanding questions and opportunities in these applications – both to better understand the limiting mechanisms within the materials and to significantly advance the durability and predictability of device performance required for renewable energy conversion and storage.United States. Dept. of Energy (Basic Energy Sciences Division of Materials Sciences and Engineering, grant DE-SC0002633)United States. Dept. of Energy (Office of Science, Graduate Fellowship Program (DOE SCGF))United States. American Recovery and Reinvestment Act of 2009 (ORISE-ORAU, contract no. DE-AC05-06OR23100))United States. Dept. of Energy. Division of Materials Sciences and Engineering (MIT/DMSE Salapatas Fellowship)United States. Air Force Office of Scientific Research (Presidential Early Career Award in Science and Engineering (PECASE)
    corecore