1,550 research outputs found

    Many faces of DAMPs in cancer therapy

    Get PDF
    A new concept of immunogenic cell death (ICD) has recently been proposed. The immunogenic characteristics of this cell death mode are mediated mainly by molecules called ‘damage-associated molecular patterns’ (DAMPs), most of which are recognized by pattern recognition receptors. Some DAMPs are actively emitted by cells undergoing ICD (e.g. calreticulin (CRT) and adenosine triphosphate (ATP)), whereas others are emitted passively (e.g. high-mobility group box 1 protein (HMGB1)). Recent studies have demonstrated that these DAMPs play a beneficial role in anti-cancer therapy by interacting with the immune system. The molecular pathways involved in translocation of CRT to the cell surface and secretion of ATP from tumor cells undergoing ICD are being elucidated. However, it has also been shown that the same DAMPs could contribute to progression of cancer and promote resistance to anticancer treatments. In this review, we will critically evaluate the beneficial and detrimental roles of DAMPs in cancer therapy, focusing mainly on CRT, ATP and HMGB1

    BIOGEOGRAPHY AND PATTERN VARIATION OF KINGSNAKES, LAMPROPELTIS GETULA, IN THE APALACHICOLA REGION OF FLORIDA

    Get PDF
    Morphology of kingsnakes, Lampropeltis getula, is described and analyzed in the Apalachicola region of the Florida panhandle. Populations inhabiting the eastern Apalachicola Lowlands, a distinct biotic province, are different from the surrounding populations in having fewer and wider light body crossbands, distinct ontogenetic interband lightening, unique ventral patterns, and the presence of non-banded (striped and patternless) individuals. We conclude that the name L. g. goini as well as the hypothesis that Apalachicola L. getula are relict populations of intergrades between L. g. getula and L. g. floridana are invalid. We believe the polymorphic eastern Apalachicola Lowlands populations are most closely related to L. g. getula, and evolved in isolation on a barrier island or the coastal strand of a peninsula during one of the many higher stands of sea in the Pleistocene

    Immunogenic cell death and emission of damps: calreticulin and ATP

    Get PDF

    Биотехнология: современные аспекы

    Get PDF

    DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown

    Get PDF
    Damage-associated molecular patterns (DAMPs) or cell death associated molecular patterns (CDAMPs) are a subset of endogenous intracellular molecules that are normally hidden within living cells but become either passively released by primary and secondary necrotic cells or actively exposed and secreted by the dying cells. Once released, DAMPs are sensed by the innate immune system and act as activators of antigen-presenting cells (APCs) to stimulate innate and adaptive immunity. Cancer cells dying in response to a subset of conventional anticancer modalities exhibit a particular composition of DAMPs at their cell surface, which has been recently shown to be vital for the stimulation of the host immune system and the control of residual disease. Photodynamic therapy (PDT) for cancer has long been shown to be capable of killing malignant cells and concomitantly stimulate the host immune system, properties that are likely linked to its ability of inducing exposure/release of certain DAMPs. PDT, by evoking oxidative stress at specific subcellular sites through the light activation of organelle-associated photosensitizers, may be unique in incorporating tumour cells destruction and antitumor immune response in one therapeutic paradigm. Here we review the current knowledge about mechanisms and signalling cascades leading to the exposure of DAMPs at the cell surface or promoting their release, the cell death mechanism associated to these processes and its immunological consequences. We also discuss how certain PDT paradigms may yield therapies that optimally stimulate the immune system and lead to the discovery of new DAMPs

    A 3D cell death assay to quantitatively determine ferroptosis in spheroids

    Get PDF
    The failure of drug efficacy in clinical trials remains a big issue in cancer research. This is largely due to the limitations of two-dimensional (2D) cell cultures, the most used tool in drug screening. Nowadays, three-dimensional (3D) cultures, including spheroids, are acknowledged to be a better model of the in vivo environment, but detailed cell death assays for 3D cultures (including those for ferroptosis) are scarce. In this work, we show that a new cell death analysis method, named 3D Cell Death Assay (3DELTA), can efficiently determine different cell death types including ferroptosis and quantitatively assess cell death in tumour spheroids. Our method uses Sytox dyes as a cell death marker and Triton X-100, which efficiently permeabilizes all cells in spheroids, was used to establish 100% cell death. After optimization of Sytox concentration, Triton X-100 concentration and timing, we showed that the 3DELTA method was able to detect signals from all cells without the need to disaggregate spheroids. Moreover, in this work we demonstrated that 2D experiments cannot be extrapolated to 3D cultures as 3D cultures are less sensitive to cell death induction. In conclusion, 3DELTA is a more cost-effective way to identify and measure cell death type in 3D cultures, including spheroids.</jats:p

    Conserving Florida’s Turtles

    Get PDF
    corecore