92 research outputs found

    Commentary on Discussion of ‘On the theory of standing waves in tyres at high vehicle speeds’ by V.V. Krylov and O. Gilbert, Journal of Sound and Vibration 329 (2010) 4398–4408

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Sound and Vibration. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published at: http://dx.doi.org/10.1016/j.jsv.2013.08.03

    Experimental study of sound radiation by plates containing circular indentations of power-law profile

    Get PDF
    This is the author’s version of a work that was accepted for publication in Applied Acoustics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published at: http://dx.doi.org/10.1016/j.apacoust.2014.07.014In this paper, the results of the first experimental investigation into sound radiation of rectangular plates containing tapered indentations of power-law profile are reported. Such tapered indentations materialise two-dimensional acoustic black holes for flexural waves in plates that result in absorption of a large proportion of the incident wave energy. A multi-indentation plate was compared to a plain reference plate of the same dimensions, and the radiated sound power was determined according to ISO 3744. It was demonstrated that not only do such multiple indentations provide substantial reduction in the damping of flexural vibrations within the plates, but also cause a substantial reduction in the radiated sound power. As the amplitudes of the flexural vibrations of a plate are directly linked to the amplitudes of radiated sound from the same plate, this paper also considers the effect of redistribution of the amplitude of the plate's response due to the presence of acoustic black holes on the amplitudes of the radiated sound. The results show that, in spite of some increase in the amplitudes of the displacements at the centres of black holes (circular indentations), the overall reduction of vibration response over the plate is large enough to cause a substantial reduction in the resulting sound radiation from plates containing indentations of power-law profile

    Contamination of indoor air by toxic soil vapours: the effects of subfloor ventilation and other protective measures

    Get PDF
    This is the author’s version of a work that was accepted for publication in the journal Building and Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published at: http://dx.doi.org/10.1016/S0360-1323(97)00053-XA steady-state analytical model is derived for estimating the concentration of vapour-phase contaminants in indoor air in houses with subfloor voids, given the contaminant concentration in bulk soil. The model includes the key mechanisms of transport and dispersion—contaminant partitioning into the soil-vapour phase, molecular diffusion, suction flow, stack effect, and ventilation, including contaminant transport by ventilation flow between subfloor void and living space. Using the model, different construction styles are examined from the point of view of their resistance to ingress of soil gases. Model results indicate that indoor air concentration depends strongly on wind velocity and on geometrical parameters of void and living space. Worked examples for houses of different construction styles illustrate the effects of wind velocity and house parameters on the concentration of benzene in soil that would give rise to its maximum permissible concentration in indoor air. Brief consideration is also given to concrete raft foundations and clean cover systems

    Comissioning of the linear accelerator-injector at the TNK facility

    No full text
    The industrial storage facility has been developed and manufactured at the Budker INP SB RAS. It contains an 80 MeV electron linear accelerator-injector and two electron storage rings: the lesser 450 MeV booster ring and the main 2.5 GeV storage ring. In 2002, the work on the accelerator assembling was begun. On December, 25 this year the accelerator was started up, and the current at the linear accelerator output was obtained. The linear accelerator schematic together with a description of the 6 meter long accelerating DAW structure which operates at 2.8 GHz, are presented in the paper. The first results of the accelerator start-up are as follows: the accelerated electron current of ~50 mA with the energy of ~55...60 MeV.Технологічний накопичувальний комплекс був спроектований і виготовлений у ІЯФ ім. Г.І. Будкера СВ РАН. Він містить у собі інжектор–лінійний прискорювач електронів з енергією до 80 МеВ і два накопичувачі електронів: малий накопичувач–бустер на енергію 450 МеВ і основний накопичувач на енергію 2.5 ГеВ. Приводяться функціональна схема лінійного прискорювача й опис конструкції прискорюючої структури із шайбами і діафрагмами довжиною 6 м, що працює на частоті 2.8 ГГц.Представлено перші результати запуску прискорювача: отриманий прискорений струм електронів ~50 мА з енергією ~(55...60) МеВ.Технологический накопительный комплекс был спроектирован и изготовлен в ИЯФ им. Г.И. Будкера СО РАН. Он включает в себя инжектор–линейный ускоритель электронов с энергией до 80 МэВ и два накопителя электронов: малый накопитель–бустер на энергию 450 МэВ и основной накопитель на энергию 2.5 ГэВ. Приводятся функциональная схема линейного ускорителя и описание конструкции ускоряющей структуры с шайбами и диафрагмами длиной 6 метров, работающей на частоте 2.8 ГГц. Представлены первые результаты запуска ускорителя: получен ускоренный ток электронов ~50 мA с энергией ~(55...60) МэВ
    corecore