79 research outputs found

    Biological responses to glyphosate drift from aerial application in non-glyphosate-resistant corn

    Get PDF
    BACKGROUND: Glyphosate drift from aerial application onto susceptible crops is inevitable, yet the biological responses to glyphosate drift in crops are not well characterized. The objectives of this research were to determine the effects of glyphosate drift from a single aerial application (18.3m swath, 866 g AE ha−1) on corn injury, chlorophyll content, shikimate level, plant height and shoot dry weight in non-glyphosate-resistant (non-GR) corn. RESULTS: One week after application (WAA), corn was killed at 3m from the edge of the spray swath, with injury decreasing to 18% at 35.4m downwind. Chlorophyll content decreased from 78% at 6m to 22% at 15.8m, and it was unaffected beyond 25.6m at 1 WAA. Shikimate accumulation in corn decreased from 349% at 0m to 93% at 15.8m, and shikimate levels were unaffected beyond 25.6m downwind. Plant height and shoot dry weight decreased gradually with increasing distance. At a distance of 35.4m, corn height was reduced by 14% and shoot dry weight by 10% at 3WAA. CONCLUSIONS: Corn injury and other biological responses point to the same conclusion, that is, injury from glyphosate aerial drift is highest at the edge of the spray swath and decreases gradually with distance. The LD50 (the lethal distance that drift must travel to cause a 50% reduction in biological response) ranged from 12 to 26m among the biological parameters when wind speed was 11.2 kmh−1 and using a complement of CP-09 spray nozzles on spray aircraft

    AllerCatPro 2.0: a web server for predicting protein allergenicity potential

    Get PDF
    Proteins in food and personal care products can pose a risk for an immediate immunoglobulin E (IgE)-mediated allergic response. Bioinformatic tools can assist to predict and investigate the allergenic potential of proteins. Here we present AllerCatPro 2.0, a web server that can be used to predict protein allergenicity potential with better accuracy than other computational methods and new features that help assessors making informed decisions. AllerCatPro 2.0 predicts the similarity between input proteins using both their amino acid sequences and predicted 3D structures towards the most comprehensive datasets of reliable proteins associated with allergenicity. These datasets currently include 4979 protein allergens, 162 low allergenic proteins, and 165 autoimmune allergens with manual expert curation from the databases of WHO/International Union of Immunological Societies (IUIS), Comprehensive Protein Allergen Resource (COMPARE), Food Allergy Research and Resource Program (FARRP), UniProtKB and Allergome. Various examples of profilins, autoimmune allergens, low allergenic proteins, very large proteins, and nucleotide input sequences showcase the utility of AllerCatPro 2.0 for predicting protein allergenicity potential. The AllerCatPro 2.0 web server is freely accessible at https://allercatpro.bii.a-star.edu.sg

    Agronomic and environmental implications of enhanced s-triazine degradation

    Get PDF
    Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted

    Agronomic and environmental implications of enhanced s-triazine degradation

    Get PDF
    Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted

    Can Leguminous Cover Crops Partially Replace Nitrogen Fertilization in Mississippi Delta Cotton Production?

    Get PDF
    Petroleum prices impact cotton nitrogen (N) fertilization cost. A field study was conducted from 2005 to 2007 to assess the interactions of cover crop (none, Austrian winter pea (Pisum sativum spp. arvense) or hairy vetch (Vicia villosa Roth)) and N fertilization (0, 67 or 134 kg N/ha applied at planting) on N availability and cotton yield under reduced-tillage management. Nitrogen content in desiccated residues averaged 49, 220, and 183 kg N/ha, in no cover crop, Austrian winter pea, and hairy vetch, respectively. Seventy percent of N in the above ground cover crop was derived from biological N fixation. In 2005, cover crops decreased cotton yield, while fertilizer N had no effect. In 2006, cover crops did not affect yield, but yield was positively correlated with N rate. In 2007, in no N plots, cotton yields were 65% higher in cover crops than in no cover crop. However, yield from N fertilized cover crop plots were similar to N fertilized no cover plots. These results indicate that leguminous cover crops can provide over 150 kg N/ha, but this N may not be as effective as fertilizer N for lack of synchronization between cotton N requirements and N release from residues

    Can leguminous cover crops partially replace nitrogen fertilization in Mississipi delta cotton production? Int

    Get PDF
    Petroleum prices impact cotton nitrogen (N) fertilization cost. A field study was conducted from 2005 to 2007 to assess the interactions of cover crop (none, Austrian winter pea (Pisum sativum spp. arvense) or hairy vetch (Vicia villosa Roth)) and N fertilization (0, 67 or 134 kg N/ha applied at planting) on N availability and cotton yield under reduced-tillage management. Nitrogen content in desiccated residues averaged 49, 220, and 183 kg N/ha, in no cover crop, Austrian winter pea, and hairy vetch, respectively. Seventy percent of N in the above ground cover crop was derived from biological N fixation. In 2005, cover crops decreased cotton yield, while fertilizer N had no effect. In 2006, cover crops did not affect yield, but yield was positively correlated with N rate. In 2007, in no N plots, cotton yields were 65% higher in cover crops than in no cover crop. However, yield from N fertilized cover crop plots were similar to N fertilized no cover plots. These results indicate that leguminous cover crops can provide over 150 kg N/ha, but this N may not be as effective as fertilizer N for lack of synchronization between cotton N requirements and N release from residues

    Модифікація імунної відповіді на ксеногенні ембріональні протеїни ад’ювантами мікробного походження

    Get PDF
    Blood serum of BALB/c mice immunized with chicken embryonic proteins (CEP) in combination with adjuvantsof microbial origin has been investigated by methods of enzyme immunoassay and immunoblotting. The analysisof accumulation of antibodies to CE P and the study of antibody-dependent cytotoxicity of lymphocytes against thetumor cells of the model suggest that the use of adjuvants of microbial origin, such as protein-containing metabolitesof culture fluid (18.5 and 70 kDa) and lipid fraction of В. subtilis B-7025 cells; S. aureus cell-wall peptidoglycan,contributes to credible strengthening of immune response to fetal antigens. The results of the study are the basisfor creating xenogenic cancer vaccine.Методами иммуноферментного анализа и иммуноблотта исследовано сыворотки крови мышей линии ВALB/с, иммунизированных эмбриональными протеинами курицы в комбинации с адъювантами микробногопроисхождения. Анализ уровня накопления антител к этим протеинам и изучение антителозависимой цитотоксичности лимфоцитов по отношению к клеткам модельных опухолей разрешают сделать вывод, что использование адъювантов микробного происхождения – протеиносодержащих метаболитовкультуральной жидкости (18,5 и 70 кДа) и липидной фракции клеток В. subtilis B-7025; пептидогликана клеток S. аureus способствует достоверному усилению иммунного ответа на фетальные антигены. Результаты исследования являются основой для конструирования ксеногенной противоопухолевой вакцины.Методами імуноферментного аналізу та імуноблоту досліджено сироватки крові мишей лінії ВALB/с,імунізованих ембріональними протеїнами курки в комбінації з ад’ювантами мікробного походження. Аналізрівня накопичення антитіл до цих протеїнів та вивчення антитілозалежної цитотоксичності лімфоцитіввідносно клітин модельних пухлин дозволяють зробити висновок, що використання ад’ювантів мікробногопоходження – протеїновмісних метаболітів культуральної рідини (18,5 і 70 кДа) та ліпідної фракції клітинВ. subtilis B-7025; пептидоглікану клітин S. аureus сприяє вірогідному підсиленню імунної відповіді нафетальні антигени. Результати дослідження є підґрунтям для конструювання ксеногенної протипухлинноївакцини

    Application of AllerCatPro 2.0 for protein safety assessments of consumer products

    Get PDF
    Foreign proteins are potentially immunogenic, and a proportion of these are able to induce immune responses that result in allergic sensitization. Subsequent exposure of sensitized subjects to the inducing protein can provoke a variety of allergic reactions that may be severe, or even fatal. It has therefore been recognized for some time that it is important to determine a priori whether a given protein has the potential to induce allergic responses in exposed subjects. For example, the need to assess whether transgene products expressed in genetically engineered crop plants have allergenic properties. This is not necessarily a straightforward exercise (as discussed elsewhere in this edition), but the task becomes even more challenging when there is a need to conduct an overall allergenicity safety assessment of complex mixtures of proteins in botanicals or other natural sources that are to be used in consumer products. This paper describes a new paradigm for the allergenicity safety assessment of proteins that is based on the use of AllerCatPro 2.0, a new version of a previously described web application model developed for the characterization of the allergenic potential of proteins. Operational aspects of AllerCatPro 2.0 are described with emphasis on the application of new features that provide improvements in the predictions of allergenic properties such as the identification of proteins with high allergenic concern. Furthermore, the paper provides a description of strategies of how AllerCatPro 2.0 can best be deployed as a screening tool for identifying suitable proteins as ingredients in consumer products as well as a tool, in conjunction with label-free proteomic analysis, for identifying and semiquantifying protein allergens in complex materials. Lastly, the paper discusses the steps that are recommended for formal allergenicity safety assessment of novel consumer products which contain proteins, including consideration and integration of predicted consumer exposure metrics. The article therefore provides a holistic perspective of the processes through which effective protein safety assessments can be made of potential allergenic hazards and risks associated with exposure to proteins in consumer products, with a particular focus on the use of AllerCatPro 2.0 for this purpose

    Effects of Terrestrial Buffer Zones on Amphibians on Golf Courses

    Get PDF
    A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi) and green frogs (Rana clamitans) in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians
    corecore