59 research outputs found

    Assessment of Transformed Properties In Vitro and of Tumorigenicity In Vivo in Primary Keratinocytes Cultured for Epidermal Sheet Transplantation

    Get PDF
    Epidermal keratinocytes are used as a cell source for autologous and allogenic cell transplant therapy for skin burns. The question addressed here is to determine whether the culture process may induce cellular, molecular, or genetic alterations that might increase the risk of cellular transformation. Keratinocytes from four different human donors were investigated for molecular and cellular parameters indicative of transformation status, including (i) karyotype, (ii) telomere length, (iii) proliferation rate, (iv) epithelial-mesenchymal transition, (v) anchorage-independent growth potential, and (vi) tumorigenicity in nude mice. Results show that, despite increased cell survival in one keratinocyte strain, none of the cultures displayed characteristics of cell transformations, implying that the culture protocol does not generate artefacts leading to the selection of transformed cells. We conclude that the current protocol does not result in an increased risk of tumorigenicity of transplanted cells

    MAK-4 and -5 supplemented diet inhibits liver carcinogenesis in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maharishi Amrit Kalash (MAK) is an herbal formulation composed of two herbal mixtures, MAK-4 and MAK-5. These preparations are part of a natural health care system from India, known as Maharishi Ayur-Veda. MAK-4 and MAK-5 are each composed of different herbs and are said to have maximum benefit when used in combination. This investigation evaluated the cancer inhibiting effects of MAK-4 and MAK-5, <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p><it>In vitro </it>assays: Aqueous extracts of MAK-4 and MAK-5 were tested for effects on <it>ras </it>induced cell transformation in the Rat 6 cell line assessed by focus formation assay. <it>In vivo </it>assays: Urethane-treated mice were put on a standard pellet diet or a diet supplemented with MAK-4, MAK-5 or both. At 36 weeks, livers were examined for tumors, sera for oxygen radical absorbance capacity (ORAC), and liver homogenates for enzyme activities of glutathione peroxidase (GPX), glutathione-S-transferase (GST), and NAD(P)H: quinone reductase (QR). Liver fragments of MAK-fed mice were analyzed for connexin (cx) protein expression.</p> <p>Results</p> <p>MAK-5 and a combination of MAK-5 plus MAK-4, inhibited <it>ras</it>-induced cell transformation. In MAK-4, MAK-5 and MAK4+5-treated mice we observed a 35%, 27% and 46% reduction in the development of urethane-induced liver nodules respectively. MAK-4 and MAK4+5-treated mice had a significantly higher ORAC value (<it>P </it>< 0.05) compared to controls (200.2 ± 33.7 and 191.6 ± 32.2 <it>vs. </it>152.2 ± 15.7 ORAC units, respectively). The urethane-treated MAK-4, MAK-5 and MAK4+5-fed mice had significantly higher activities of liver cytosolic enzymes compared to the urethane-treated controls and to untreated mice: GPX(0.23 ± 0.08, 0.21 ± 0.05, 0.25 ± 0.04, 0.20 ± 0.05, 0.21 ± 0.03 U/mg protein, respectively), GST (2.0 ± 0.4, 2.0 ± 0.6, 2.1 ± 0.3, 1.7 ± 0.2, 1.7 ± 0.2 U/mg protein, respectively) and QR (0.13 ± 0.02, 0.12 ± 0.06, 0.15 ± 0.03, 0.1 ± 0.04, 0.11 ± 0.03 U/mg protein, respectively). Livers of MAK-treated mice showed a time-dependent increased expression of cx32.</p> <p>Conclusion</p> <p>Our results show that a MAK-supplemented diet inhibits liver carcinogenesis in urethane-treated mice. The prevention of excessive oxidative damage and the up-regulation of connexin expression are two of the possible effects of these products.</p

    Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic.

    Get PDF
    Biomarker discovery and development for clinical research, diagnostics and therapy monitoring in clinical trials have advanced rapidly in key areas of medicine - most notably, oncology and cardiovascular diseases - allowing rapid early detection and supporting the evolution of biomarker-guided, precision-medicine-based targeted therapies. In Alzheimer disease (AD), breakthroughs in biomarker identification and validation include cerebrospinal fluid and PET markers of amyloid-β and tau proteins, which are highly accurate in detecting the presence of AD-associated pathophysiological and neuropathological changes. However, the high cost, insufficient accessibility and/or invasiveness of these assays limit their use as viable first-line tools for detecting patterns of pathophysiology. Therefore, a multistage, tiered approach is needed, prioritizing development of an initial screen to exclude from these tests the high numbers of people with cognitive deficits who do not demonstrate evidence of underlying AD pathophysiology. This Review summarizes the efforts of an international working group that aimed to survey the current landscape of blood-based AD biomarkers and outlines operational steps for an effective academic-industry co-development pathway from identification and assay development to validation for clinical use.I recieved an honorarium from Roche Diagnostics for my participation in the advisory panel meeting leading to this pape

    The role of gap junctional intercellular communication (GJIC) disorders in experimental and human carcinogenesis

    No full text
    There is a growing body of evidence supporting the etiologic implication of gap junctional intercellular communication disorders in carcinogenesis. Substantial progress has recently be.en made both in molecular biology of gap junction and in the field of cancer research. They provide new insights and conceptions of gap junctional disorders in tumor pathology. Modern understanding of the structure, function and regulation of gap junctions, as well as putative mechanisms of its disorders in human and experimental carcinogenesis are discussed in this review with particular emphasis on fast-moving aspects of this problem

    Inhibition of rat liver gap junction intercellular communication by tumor-promoting agents in vivo; association with aberrant localization of connexin proteins

    No full text

    Altered homologous and heterologous gap-junctional intercellular communication in primary liver tumors associated with aberrant protein localization but not gene mutation of connexin 32

    No full text

    GAP JUNCTIONAL INTERCELLULAR COMMUNICATION AND CELL-PROLIFERATION DURING RAT-LIVER CARCINOGENESIS

    No full text
    During multistage liver carcinogenesis, there is a sequential decrease in gap junctional intercellular communication (GJIC), associated with reduced expression of a major liver gap-junction protein (connexin 32). There are also several lines of evidence indicating that the induction of cell proliferation plays an important role during liver carcinogenesis. The relationship between GJIC and cell proliferation and their roles in liver carcinogenesis are not yet known. Results from various experiments suggest that there is a close relationship between the inhibition of GJIC and stimulation of liver cell proliferation. However, our results also suggest that different stimuli may affect cell proliferation and GJIC differentially by different mechanisms

    M: Genomic profiling of a human leukemic monocytic cell-line (THP-1) exposed to alpha particle radiation

    No full text
    This study examined alpha (α-) particle radiation effects on global changes in gene expression in human leukemic monocytic cells (THP-1) for the purposes of mining for candidate biomarkers that could be used for the development of a biological assessment tool. THP-1 cells were exposed to α-particle radiation at a dose range of 0 to 1.5 Gy. Twenty-four hours and three days after exposure gene expression was monitored using microarray technology. A total of 16 genes were dose responsive and classified as early onset due to their expression 24 h after exposure. Forty-eight transcripts were dose responsive and classified as late-onset as they were expressed 72 h after exposure. Among these genes, 6 genes were time and dose responsive and validated further using alternate technology. These transcripts were upregulated and associated with biological processes related to immune function, organelle stability and cell signalling/communication. This panel of genes merits further validation to determine if they are strong candidate biomarkers indicative of α-particle exposure
    corecore