9,404 research outputs found
Persistent quantum interfering electron trajectories
The emission of above-ionization-threshold harmonics results from the
recombination of two electron wavepackets moving along a "short" and a "long"
trajectory in the atomic continuum. Attosecond pulse train generation has so
far been attributed to the short trajectory, attempted to be isolated through
targeted trajectory-selective phase matching conditions. Here, we provide
experimental evidence for the contribution of both trajectories to the harmonic
emission, even under phase matching conditions unfavorable for the long
trajectory. This is finger printed in the interference modulation of the
harmonic yield as a function of the driving laser intensity. The effect is also
observable in the sidebands yield resulting from the frequency mixing of the
harmonics and the driving laser field, an effect with consequences in
cross-correlation pulse metrology approaches.Comment: 13 pages, 3 figure
Active contractility in actomyosin networks
Contractile forces are essential for many developmental processes involving
cell shape change and tissue deformation. Recent experiments on reconstituted
actomyosin networks, the major component of the contractile machinery, have
shown that active contractility occurs above a threshold motor concentration
and within a window of crosslink concentration. We present a microscopic
dynamic model that incorporates two essential aspects of actomyosin
self-organization: the asymmetric load response of individual actin filaments
and the correlated motor-driven events mimicking myosin-induced filament
sliding. Using computer simulations we examine how the concentration and
susceptibility of motors contribute to their collective behavior and interplay
with the network connectivity to regulate macroscopic contractility. Our model
is shown to capture the formation and dynamics of contractile structures and
agree with the observed dependence of active contractility on microscopic
parameters including the contractility onset. Cooperative action of
load-resisting motors in a force-percolating structure integrates local
contraction/buckling events into a global contractile state via an active
coarsening process, in contrast to the flow transition driven by uncorrelated
kicks of susceptible motors.Comment: 15 pages, 4 main figures, 4 supplementary figure
Influence of RANEY nickel on the formation of intermediates in the degradation of lignin
Lignin forms an important part of lignocellulosic biomass and is an abundantly available residue. It is a potential renewable source of phenol. Liquefaction of enzymatic hydrolysis lignin as well as catalytical hydrodeoxygenation of the main intermediates in the degradation of lignin, that is, catechol and guaiacol, was studied. The cleavage of the ether bonds, which are abundant in the molecular structure of lignin, can be realised in near-critical water (573 to 673 K, 20 to 30MPa). Hydrothermal treatment in this context provides high selectivity in respect to hydroxybenzenes, especially catechol. RANEY Nickel was found to be an adequate catalyst for hydrodeoxygenation. Although it does not influence the cleavage of ether bonds, RANEY Nickel favours the production of phenol from both lignin and catechol. The main product from hydrodeoxygenation of guaiacol with RANEY Nickel was cyclohexanol. Reaction mechanism and kinetics of the degradation of guaiacol were explored
Morphogen Transport in Epithelia
We present a general theoretical framework to discuss mechanisms of morphogen
transport and gradient formation in a cell layer. Trafficking events on the
cellular scale lead to transport on larger scales. We discuss in particular the
case of transcytosis where morphogens undergo repeated rounds of
internalization into cells and recycling. Based on a description on the
cellular scale, we derive effective nonlinear transport equations in one and
two dimensions which are valid on larger scales. We derive analytic expressions
for the concentration dependence of the effective diffusion coefficient and the
effective degradation rate. We discuss the effects of a directional bias on
morphogen transport and those of the coupling of the morphogen and receptor
kinetics. Furthermore, we discuss general properties of cellular transport
processes such as the robustness of gradients and relate our results to recent
experiments on the morphogen Decapentaplegic (Dpp) that acts in the fruit fly
Drosophila
The non-Gaussian tail of cosmic-shear statistics
Due to gravitational instability, an initially Gaussian density field
develops non-Gaussian features as the Universe evolves. The most prominent
non-Gaussian features are massive haloes, visible as clusters of galaxies. The
distortion of high-redshift galaxy images due to the tidal gravitational field
of the large-scale matter distribution, called cosmic shear, can be used to
investigate the statistical properties of the LSS. In particular, non-Gaussian
properties of the LSS will lead to a non-Gaussian distribution of cosmic-shear
statistics. The aperture mass () statistics, recently introduced as
a measure for cosmic shear, is particularly well suited for measuring these
non-Gaussian properties. In this paper we calculate the highly non-Gaussian
tail of the aperture mass probability distribution, assuming Press-Schechter
theory for the halo abundance and the `universal' density profile of haloes as
obtained from numerical simulations. We find that for values of
much larger than its dispersion, this probability distribution is closely
approximated by an exponential, rather than a Gaussian. We determine the
amplitude and shape of this exponential for various cosmological models and
aperture sizes, and show that wide-field imaging surveys can be used to
distinguish between some of the currently most popular cosmogonies. Our study
here is complementary to earlier cosmic-shear investigations which focussed
more on two-point statistical properties.Comment: 9 pages, 5 figures, submitted to MNRA
Cavity Assisted Nondestructive Laser Cooling of Atomic Qubits
We analyze two configurations for laser cooling of neutral atoms whose
internal states store qubits. The atoms are trapped in an optical lattice which
is placed inside a cavity. We show that the coupling of the atoms to the damped
cavity mode can provide a mechanism which leads to cooling of the motion
without destroying the quantum information.Comment: 12 page
Annotated Bibliography of Fire Literature Relative to Northern Grasslands in South-Central Canada and North-Central United States
This publication provides a condensed reference of fire literature for those with an interest in fire ecology
- …