10,023 research outputs found

    On the particle paths and the stagnation points in small-amplitude deep-water waves

    Full text link
    In order to obtain quite precise information about the shape of the particle paths below small-amplitude gravity waves travelling on irrotational deep water, analytic solutions of the nonlinear differential equation system describing the particle motion are provided. All these solutions are not closed curves. Some particle trajectories are peakon-like, others can be expressed with the aid of the Jacobi elliptic functions or with the aid of the hyperelliptic functions. Remarks on the stagnation points of the small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with arXiv:1106.382

    Robust formation of morphogen gradients

    Full text link
    We discuss the formation of graded morphogen profiles in a cell layer by nonlinear transport phenomena, important for patterning developing organisms. We focus on a process termed transcytosis, where morphogen transport results from binding of ligands to receptors on the cell surface, incorporation into the cell and subsequent externalization. Starting from a microscopic model, we derive effective transport equations. We show that, in contrast to morphogen transport by extracellular diffusion, transcytosis leads to robust ligand profiles which are insensitive to the rate of ligand production

    Influence of RANEY nickel on the formation of intermediates in the degradation of lignin

    Get PDF
    Lignin forms an important part of lignocellulosic biomass and is an abundantly available residue. It is a potential renewable source of phenol. Liquefaction of enzymatic hydrolysis lignin as well as catalytical hydrodeoxygenation of the main intermediates in the degradation of lignin, that is, catechol and guaiacol, was studied. The cleavage of the ether bonds, which are abundant in the molecular structure of lignin, can be realised in near-critical water (573 to 673 K, 20 to 30MPa). Hydrothermal treatment in this context provides high selectivity in respect to hydroxybenzenes, especially catechol. RANEY Nickel was found to be an adequate catalyst for hydrodeoxygenation. Although it does not influence the cleavage of ether bonds, RANEY Nickel favours the production of phenol from both lignin and catechol. The main product from hydrodeoxygenation of guaiacol with RANEY Nickel was cyclohexanol. Reaction mechanism and kinetics of the degradation of guaiacol were explored

    Breeding Yellow-flowered Alfalfa for Combined Wildlife Habitat and Forage Purposes

    Get PDF
    The objectives of our research were to: • evaluate a wide array of alfalfa germplasm containing varied levels of M. sativa ssp. falcata for traits related to suitability for stockpiling and nesting cover for game birds, •compare yellow-flowered cultivars and germplasms to conventional hay- and pasture-type cultivars for forage yield and quality in a delayed single-harvest / production system, and • develop, by phenotypic selection, one or more synthetic cultivars of yellow-flowered alfalfa that would have high forage yield, tolerance to potato leafhopper yellowing, prolonged flowering, and good leaf retention under a stockpiling management system until mid-July

    Morphogen Transport in Epithelia

    Full text link
    We present a general theoretical framework to discuss mechanisms of morphogen transport and gradient formation in a cell layer. Trafficking events on the cellular scale lead to transport on larger scales. We discuss in particular the case of transcytosis where morphogens undergo repeated rounds of internalization into cells and recycling. Based on a description on the cellular scale, we derive effective nonlinear transport equations in one and two dimensions which are valid on larger scales. We derive analytic expressions for the concentration dependence of the effective diffusion coefficient and the effective degradation rate. We discuss the effects of a directional bias on morphogen transport and those of the coupling of the morphogen and receptor kinetics. Furthermore, we discuss general properties of cellular transport processes such as the robustness of gradients and relate our results to recent experiments on the morphogen Decapentaplegic (Dpp) that acts in the fruit fly Drosophila

    Steady water waves with multiple critical layers: interior dynamics

    Get PDF
    We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.Comment: 14 pages, 3 figures. As accepted for publication in J. Math. Fluid Mec

    Self-organization and Mechanical Properties of Active Filament Bundles

    Full text link
    A phenomenological description for active bundles of polar filaments is presented. The activity of the bundle results from crosslinks, that induce relative displacements between the aligned filaments. Our generic description is based on momentum conservation within the bundle. By specifying the internal forces, a simple minimal model for the bundle dynamics is obtained, capturing generic dynamic behaviors. In particular, contracted states as well as solitary and oscillatory waves appear through dynamic instabilities. The introduction of filament adhesion leads to self-organized persistent filament transport. Furthermore, calculating the tension, homogeneous bundles are shown to be able to actively contract and to perform work against external forces. Our description is motivated by dynamic phenomena in the cytoskeleton and could apply to stress-fibers and self-organization phenomena during cell-locomotion.Comment: 19 pages, 10 figure

    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations

    Get PDF
    In the present study we prove rigorously that in the long-wave limit, the unidirectional solutions of a class of nonlocal wave equations to which the improved Boussinesq equation belongs are well approximated by the solutions of the Camassa-Holm equation over a long time scale. This general class of nonlocal wave equations model bidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral. To justify the Camassa-Holm approximation we show that approximation errors remain small over a long time interval. To be more precise, we obtain error estimates in terms of two independent, small, positive parameters ϵ\epsilon and δ\delta measuring the effect of nonlinearity and dispersion, respectively. We further show that similar conclusions are also valid for the lower order approximations: the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation.Comment: 24 pages, to appear in Discrete and Continuous Dynamical System
    • …
    corecore