4 research outputs found
Airborne chemical pollution and children’s asthma incidence rate in Minsk
Introduction: Asthma, as a multifactorial disease is closely connected with air pollution. Discovering interconnection between concentrations of air pollutants and asthma incidence rate among children provides information for developing effective measures to reduce air pollution and improve population health. Study purpose was to carry out hygienic analysis of the influence of atmospheric air quality on the incidence rate of bronchial asthma and the asthmatic status of children in Minsk in 2009-2018.
Methods: During 2019 retrospective health cohort study was conducted, data from stationary air quality monitoring posts were collected. Correlation analysis was conducted by determining the Pearson rank correlation coefficient.
Results: Strong evidence was found for concentrations of particulate matter (dust / aerosol undifferentiated in composition), lead, ammonia and nitrogen dioxide making a significant contribution to the formation of elevated asthma and asthmatic status morbidity. The age group of risk are children under the age of 9 years (inclusive).
Conclusions: Patterns obtained in this study are confirmed by the results of other studies (Wang et al. 2017; Orellano et al. 2017). Nevertheless, the main limitations in study are associated with the heterogeneity of the distribution of air quality monitoring posts and the changing list of controlled pollutants for the analyzed period
Newly identified climatically and environmentally significant high-latitude dust sources
Peer reviewe
Newly identified climatically and environmentally significant high-latitude dust sources
Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth\u27s systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥0.5), very high (SI ≥0.7), and the highest potential (SI ≥0.9) for dust emission cover >1 670 000 km, >560 000 km, and >240 000 km, respectively. In the Arctic HLD region (≥60 N), land area with SI ≥0.5 is 5.5 % (1 035 059 km), area with SI ≥0.7 is 2.3 % (440 804 km), and area with SI ≥0.9 is 1.1 % (208 701 km). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50 N, with a “transitional HLD-source area” extending at latitudes 50–58∘ N in Eurasia and 50–55 N in Canada and a “cold HLD-source area” including areas north of 60 N in Eurasia and north of 58 N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD