66 research outputs found

    Ξ²-Cell Proliferation, but Not Neogenesis, Following 60% Partial Pancreatectomy Is Impaired in the Absence of FoxM1

    Get PDF
    OBJECTIVEβ€”This study was designed to determine whether the transcription factor FoxM1 was required for regeneration of Ξ²-cell mass via proliferation and/or neogenesis in the adult after 60% partial pancreatectomy (PPx)

    FoxM1, a Forkhead Transcription Factor Is a Master Cell Cycle Regulator for Mouse Mature T Cells but Not Double Positive Thymocytes

    Get PDF
    FoxM1 is a forkhead box transcription factor and a known master regulator required for different phases of the cell cycle. In cell lines, FoxM1 deficient cells exhibit delayed S phase entry, aneuploidy, polyploidy and can't complete mitosis. In vivo, FoxM1 is expressed mostly in proliferating cells but is surprisingly also found in non-proliferating CD4+CD8+ double positive thymocytes. Here, we addressed the role of FoxM1 in T cell development by generating and analyzing two different lines of T-cell specific FoxM1 deficient mice. As expected, FoxM1 is required for proliferation of early thymocytes and activated mature T cells. Defective expression of many cell cycle proteins was detected, including cyclin A, cyclin B1, cdc2, cdk2, p27 and the Rb family members p107 and p130 but surprisingly not survivin. Unexpectedly, loss of FoxM1 only affects a few cell cycle proteins in CD4+CD8+ thymocytes and has little effect on their sensitivity to apoptosis and the subsequent steps of T cell differentiation. Thus, regulation of cell cycle genes by FoxM1 is stage- and context-dependent

    Deletion of Forkhead Box M1 Transcription Factor from Respiratory Epithelial Cells Inhibits Pulmonary Tumorigenesis

    Get PDF
    The Forkhead Box m1 (Foxm1) protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1βˆ’/βˆ’ mice) prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA)/butylated hydroxytoluene (BHT). Decreased lung tumorigenesis in epFoxm1βˆ’/βˆ’ mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2Ξ± (TOPO-2Ξ±), a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2Ξ± mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2Ξ± promoter region, indicating that TOPO-2Ξ± is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2Ξ± expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy

    Expression of Foxm1 Transcription Factor in Cardiomyocytes Is Required for Myocardial Development

    Get PDF
    Forkhead Box M1 (Foxm1) is a transcription factor essential for organ morphogenesis and development of various cancers. Although complete deletion of Foxm1 in Foxm1βˆ’/βˆ’ mice caused embryonic lethality due to severe abnormalities in multiple organ systems, requirements for Foxm1 in cardiomyocytes remain to be determined. This study was designed to elucidate the cardiomyocyte-autonomous role of Foxm1 signaling in heart development. We generated a new mouse model in which Foxm1 was specifically deleted from cardiomyocytes (Nkx2.5-Cre/Foxm1fl/f mice). Deletion of Foxm1 from cardiomyocytes was sufficient to disrupt heart morphogenesis and induce embryonic lethality in late gestation. Nkx2.5-Cre/Foxm1fl/fl hearts were dilated with thinning of the ventricular walls and interventricular septum, as well as disorganization of the myocardium which culminated in cardiac fibrosis and decreased capillary density. Cardiomyocyte proliferation was diminished in Nkx2.5-Cre/Foxm1fl/fl hearts owing to altered expression of multiple cell cycle regulatory genes, such as Cdc25B, Cyclin B1, Plk-1, nMyc and p21cip1. In addition, Foxm1 deficient hearts displayed reduced expression of CaMKIIΞ΄, Hey2 and myocardin, which are critical mediators of cardiac function and myocardial growth. Our results indicate that Foxm1 expression in cardiomyocytes is critical for proper heart development and required for cardiomyocyte proliferation and myocardial growth

    HDAC1 Cooperates with C/EBPΞ± in the Inhibition of Liver Proliferation in Old Mice*

    No full text
    Epigenetic control of liver proliferation involves cooperation between transcription factors and chromatin-remodeling proteins. In this work, we found that the levels of HDAC1 (histone deacetylase 1) are increased in quiescent livers of old mice. The elevation of HDAC1 in liver is mediated by the RNA-binding protein CUGBP1. We found that the age-associated CUGBP1-eIF2 complex binds to the 5β€² region of HDAC1 mRNA and increases translation of HDAC1 in the liver. Further analyses showed that CUGBP1 also increases expression of HDAC1 in cultured cells, in the livers of CUGBP1 transgenic mice, and in the livers of mice injected with cyclin D3, which enhances the formation of the CUGBP1-eIF2 complex. In livers of old mice, HDAC1 interacts with the transcription factor C/EBPΞ± and is recruited by this protein to E2F-dependent promoters as a component of high Mr C/EBPΞ±-Brm complexes. The recruitment of HDAC1 to c-Myc and FoxM1B promoters leads to deacetylation of histone H3 at Lys-9 on these E2F-dependent promoters. We show that HDAC1 is an important mediator of growth-inhibitory activity of C/EBPΞ± and that small interfering RNA-mediated inhibition of HDAC1 reduces the ability of C/EBPΞ± to inhibit cell proliferation. In addition, we have found that both elevation of HDAC1 and interaction of C/EBPΞ± with HDAC1 are controlled by cyclin D3-dependent mechanisms. Treatment of old mice with growth hormone, which reduces cyclin D3 levels, leads to the reduction of the CUGBP1-eIF2 complex, normalization of HDAC1 levels, and inhibition of interactions of HDAC1 with C/EBPΞ±-Brm complexes. Thus, our data demonstrate that translational elevation of HDAC1 in livers of old mice is involved in the assembly of high Mr protein-protein complexes that inhibit liver proliferation
    • …
    corecore