5 research outputs found

    Landiolol in patients with septic shock resident in an intensive care unit (LANDI-SEP): study protocol for a randomized controlled trial

    Get PDF
    In patients with septic shock, the presence of an elevated heart rate (HR) after fluid resuscitation marks a subgroup of patients with a particularly poor prognosis. Several studies have shown that HR control in this population is safe and can potentially improve outcomes. However, all were conducted in a single-center setting. The aim of this multicenter study is to demonstrate that administration of the highly beta1-selective and ultrashort-acting beta blocker landiolol in patients with septic shock and persistent tachycardia (HR ae 95 beats per minute [bpm]) is effective in reducing and maintaining HR without increasing vasopressor requirements. A phase IV, multicenter, prospective, randomized, open-label, controlled study is being conducted. The study will enroll a total of 200 patients with septic shock as defined by The Third International Consensus Definitions for Sepsis and Septic Shock criteria and tachycardia (HR ae 95 bpm) despite a hemodynamic optimization period of 24-36 h. Patients are randomized (1:1) to receive either standard treatment (according to the Surviving Sepsis Campaign Guidelines 2016) and continuous landiolol infusion to reach a target HR of 80-94 bpm or standard treatment alone. The primary endpoint is HR response (HR 80-94 bpm), the maintenance thereof, and the absence of increased vasopressor requirements during the first 24 h after initiating treatment. Despite recent studies, the role of beta blockers in the treatment of patients with septic shock remains unclear. This study will investigate whether HR control using landiolol is safe, feasible, and effective, and further enhance the understanding of beta blockade in patients with septic shock

    Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables

    No full text
    Abstract Audencel is a dendritic cell (DC)-based cellular cancer immunotherapy against glioblastoma multiforme (GBM). It is characterized by loading of DCs with autologous whole tumor lysate and in vitro maturation via “danger signals”. The recent phase II “GBM-Vax” trial showed no clinical efficacy for Audencel as assessed with progression-free and overall survival in all patients. Here we present immunological research accompanying the trial with a focus on immune system factors related to outcome and Audencel’s effect on the immune system. Methodologically, peripheral blood samples (from apheresis before Audencel or venipuncture during Audencel) were subjected to functional characterization via enzyme-linked immunospot (ELISPOT) assays connected with cytokine bead assays (CBAs) as well as phenotypical characterization via flow cytometry and mRNA quantification. GBM tissue samples (from surgery) were subjected to T cell receptor sequencing and immunohistochemistry. As results we found: Patients with favorable pre-existing anti-tumor characteristics lived longer under Audencel than Audencel patients without them. Pre-vaccination blood CD8+ T cell count and ELISPOT Granzyme B production capacity in vitro upon tumor antigen exposure were significantly correlated with overall survival. Despite Audencel’s general failure to induce a significant clinical response, it nevertheless seemed to have an effect on the immune system. For instance, Audencel led to a significant up-regulation of the Th1-related immunovariables ELISPOT IFNγ, the transcription factor T-bet in the blood and ELISPOT IL-2 in a dose-dependent manner upon vaccination. Post-vaccination levels of ELISPOT IFNγ and CD8+ cells in the blood were indicative of a significantly better survival. In summary, Audencel failed to reach an improvement of survival in the recent phase II clinical trial. No clinical efficacy was registered. Our concomitant immunological work presented here indicates that outcome under Audencel was influenced by the state of the immune system. On the other hand, Audencel also seemed to have stimulated the immune system. Overall, these immunological considerations suggest that DC immunotherapy against glioblastoma should be studied further – with the goal of translating an apparent immunological response into a clinical response. Future research should concentrate on investigating augmentation of immune reactions through combination therapies or on developing meaningful biomarkers

    Audencel Immunotherapy Based on Dendritic Cells Has No Effect on Overall and Progression-Free Survival in Newly Diagnosed Glioblastoma: A Phase II Randomized Trial

    No full text
    Dendritic cells (DCs) are antigen-presenting cells that are capable of priming anti-tumor immune responses, thus serving as attractive tools to generate tumor vaccines. In this multicentric randomized open-label phase II study, we investigated the efficacy of vaccination with tumor lysate-charged autologous DCs (Audencel) in newly diagnosed glioblastoma multiforme (GBM). Patients aged 18 to 70 years with histologically proven primary GBM and resection of at least 70% were randomized 1:1 to standard of care (SOC) or SOC plus vaccination (weekly intranodal application in weeks seven to 10, followed by monthly intervals). The primary endpoint was progression-free survival at 12 months. Secondary endpoints were overall survival, safety, and toxicity. Seventy-six adult patients were analyzed in this study. Vaccinations were given for seven (3–20) months on average. No severe toxicity was attributable to vaccination. Seven patients showed flu-like symptoms, and six patients developed local skin reactions. Progression-free survival at 12 months did not differ significantly between the control and vaccine groups (28.4% versus 24.5%, p = 0.9975). Median overall survival was similar with 18.3 months (vaccine: 564 days, 95% CI: 436–671 versus control: 568 days, 95% CI: 349–680; p = 0.89, harzard ratio (HR) 0.99). Hence, in this trial, the clinical outcomes of patients with primary GBM could not be improved by the addition of Audencel to SOC
    corecore