23 research outputs found
Radiation Hydrodynamical Instabilities in Cosmological and Galactic Ionization Fronts
Ionization fronts, the sharp radiation fronts behind which H/He ionizing
photons from massive stars and galaxies propagate through space, were
ubiquitous in the universe from its earliest times. The cosmic dark ages ended
with the formation of the first primeval stars and galaxies a few hundred Myr
after the Big Bang. Numerical simulations suggest that stars in this era were
very massive, 25 - 500 solar masses, with H II regions of up to 30,000
light-years in diameter. We present three-dimensional radiation hydrodynamical
calculations that reveal that the I-fronts of the first stars and galaxies were
prone to violent instabilities, enhancing the escape of UV photons into the
early intergalactic medium (IGM) and forming clumpy media in which supernovae
later exploded. The enrichment of such clumps with metals by the first
supernovae may have led to the prompt formation of a second generation of
low-mass stars, profoundly transforming the nature of the first protogalaxies.
Cosmological radiation hydrodynamics is unique because ionizing photons coupled
strongly to both gas flows and primordial chemistry at early epochs,
introducing a hierarchy of disparate characteristic timescales whose relative
magnitudes can vary greatly throughout a given calculation. We describe the
adaptive multistep integration scheme we have developed for the self-consistent
transport of both cosmological and galactic ionization fronts.Comment: 6 pages, 4 figures, accepted for proceedings of HEDLA2010, Caltech,
March 15 - 18, 201
Magnetized Kelvin-Helmholtz instability in the presence of a radiation field
The purpose of this study is to analyze the dynamical role of a radiation
field on the growth rate of the unstable Kelvin - Helmholtz (KH) perturbations.
As a first step toward this purpose, the analyze is done in a general way,
irrespective of applying the model to a specific astronomical system. The
transition zone between the two layers of the fluid is ignored. Then, we
perform a linear analysis and by imposing suitable boundary conditions and
considering a radiation field, we obtain appropriate dispersion relation.
Unstable modes are studied by solving the dispersion equation numerically, and
then growth rates of them are obtained. By analyzing our dispersion relation,
we show that for a wide range of the input parameters, the radiation field has
a destabilizing effect on KH instability. In eruptions of the galaxies or
supermassive stars, the radiation field is dynamically important and because of
the enhanced KH growth rates in the presence of the radiation; these eruptions
can inject more momentum and energy into their environment and excite more
turbulent motions.Comment: Accepted for publication in Astrophysics and Space Scienc
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
Dense Stellar Populations: Initial Conditions
This chapter is based on four lectures given at the Cambridge N-body school
"Cambody". The material covered includes the IMF, the 6D structure of dense
clusters, residual gas expulsion and the initial binary population. It is aimed
at those needing to initialise stellar populations for a variety of purposes
(N-body experiments, stellar population synthesis).Comment: 85 pages. To appear in The Cambridge N-body Lectures, Sverre Aarseth,
Christopher Tout, Rosemary Mardling (eds), Lecture Notes in Physics Series,
Springer Verla
Star clusters near and far; tracing star formation across cosmic time
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio