599 research outputs found

    Temperature dependent characterization of optical fibres for distributed temperature sensing in hot geothermal wells

    Full text link
    This study was performed in order to select a proper fibre for the application of a distributed temperature sensing system within a hot geothermal well in Iceland. Commercially available high temperature graded index fibres have been tested under in-situ temperature conditions. Experiments have been performed with four different polyimide coated fibres, a fibre with an aluminum coating and a fibre with a gold coating. To select a fibre, the relationship between attenuation, temperature, and time has been analyzed together with SEM micrographs. On the basis of these experiments, polyimide fibres have been chosen for utilisation. Further tests in ambient and inert atmosphere have been conducted with two polyimide coated fibres to set an operating temperature limit for these fibres. SEM micrographs, together with coating colour changes have been used to characterize the high temperature performance of the fibres. A novel cable design has been developed, a deployment strategy has been worked out and a suitable well for deployment has been selected.Comment: PACS: 42.81.Pa, 93.85.Fg, 47.80.Fg, 91.35.Dc, 07.20.Dt, 07.60.V

    Localization and Coherence in Nonintegrable Systems

    Full text link
    We study the irreversible dynamics of nonlinear, nonintegrable Hamiltonian oscillator chains approaching their statistical asympotic states. In systems constrained by more than one conserved quantity, the partitioning of the conserved quantities leads naturally to localized and coherent structures. If the phase space is compact, the final equilibrium state is governed by entropy maximization and the final coherent structures are stable lumps. In systems where the phase space is not compact, the coherent structures can be collapses represented in phase space by a heteroclinic connection to infinity.Comment: 41 pages, 15 figure

    Three-Particle Correlations in Simple Liquids

    Full text link
    We use video microscopy to follow the phase-space trajectory of a two-dimensional colloidal model liquid and calculate three-point correlation functions from the measured particle configurations. Approaching the fluid-solid transition by increasing the strength of the pair-interaction potential, one observes the gradual formation of a crystal-like local order due to triplet correlations, while being still deep inside the fluid phase. Furthermore, we show that in a strongly interacting system the Born-Green equation can be satisfied only with the full triplet correlation function but not with three-body distribution functions obtained from superposing pair-correlations (Kirkwood superposition approximation).Comment: 4 pages, submitted to PRL, experimental paper, 2nd version: Fig.1 and two new paragraphs have been adde

    Tweed in Martensites: A Potential New Spin Glass

    Full text link
    We've been studying the ``tweed'' precursors above the martensitic transition in shape--memory alloys. These characteristic cross--hatched modulations occur for hundreds of degrees above the first--order shape--changing transition. Our two--dimensional model for this transition, in the limit of infinite elastic anisotropy, can be mapped onto a spin--glass Hamiltonian in a random field. We suggest that the tweed precursors are a direct analogy of the spin--glass phase. The tweed is intermediate between the high--temperature cubic phase and the low--temperature martensitic phase in the same way as the spin--glass phase can be intermediate between ferromagnet and antiferromagnet.Comment: 18 pages and four figures (included

    Assessing Semantic Similarities among Geospatial Feature Class Definitions

    Get PDF
    The assessment of semantic similarity among objects is a basic requirement for semantic interoperability. This paper presents an innovative approach to semantic similarity assessment by combining the advantages of two different strategies: featurematching process and semantic distance calculation. The model involves a knowledge base of spatial concepts that consists of semantic relations (is-a and part-whole) and distinguishing features (functions, parts, and attributes). By taking into consideration cognitive properties of similarity assessments, this model expects to represent a cognitively plausible and computationally achievable method for measuring the degree of interoperability

    Triplet correlations in two-dimensional colloidal model liquids

    Full text link
    Three-body distribution functions in classical fluids have been theoretically investigated many times, but have never been measured directly. We present experimental three-point correlation functions that are computed from particle configurations measured by means of video-microscopy in two types of quasi-two-dimensional colloidal model fluids: a system of charged colloidal particles and a system of paramagnetic colloids. In the first system the particles interact via a Yukawa potential, in the second via a potential Γ/r3\Gamma/r^{3}. We find for both systems very similar results: on increasing the coupling between the particles one observes the gradual formation of a crystal-like local order due to triplet correlations, even though the system is still deep inside the fluid phase. These are mainly packing effects as is evident from the close resemblance between the results for the two systems having completely different pair-interaction potentials.Comment: many pages, 8 figures, contribution to the special issue in J.Phys. Cond. Mat. of the CECAM meeting in LYON ''Many-body....'
    • …
    corecore