91 research outputs found

    In patients with primary Sjögren’s syndrome innate-like MAIT cells display upregulated IL-7R, IFN-γ, and IL-21 expression and have increased proportions of CCR9 and CXCR5-expressing cells

    Get PDF
    Introduction: Mucosal-associated invariant T (MAIT) cells might play a role in B cell hyperactivity and local inflammation in primary Sjögren’s syndrome (pSS), just like previously studied mucosa-associated CCR9+ and CXCR5+ T helper cells. Here, we investigated expression of CCR9, CXCR5, IL-18R and IL-7R on MAIT cells in pSS, and assessed the capacity of DMARDs to inhibit the activity of MAIT cells. Methods: Circulating CD161+ and IL-18Rα+ TCRVα7.2+ MAIT cells from pSS patients and healthy controls (HC) were assessed using flow cytometry, and expression of CCR9, CXCR5, and IL-7R on MAIT cells was studied. Production of IFN-γ and IL-21 by MAIT cells was measured upon IL-7 stimulation in the presence of leflunomide (LEF) and hydroxychloroquine (HCQ). Results: The numbers of CD161+ and IL-18Rα+ MAIT cells were decreased in pSS patients compared to HC. Relative increased percentages of CD4 MAIT cells in pSS patients caused significantly higher CD4/CD8 ratios in MAIT cells. The numbers of CCR9 and CXCR5-expressing MAIT cells were significantly higher in pSS patients. IL-7R expression was higher in CD8 MAIT cells as compared to all CD8 T cells, and changes in IL-7R expression correlated to several clinical parameters. The elevated production of IL-21 by MAIT cells was significantly inhibited by LEF/HCQ treatment. Conclusion: Circulating CD161+ and IL-18Rα+ MAIT cell numbers are decreased in pSS patients. Given their enriched CCR9/CXCR5 expression this may facilitate migration to inflamed salivary glands known to overexpress CCL25/CXCL13. Given the pivotal role of IL-7 and IL-21 in inflammation in pSS this indicates a potential role for MAIT cells in driving pSS immunopathology

    CCR9/CXCR5 Co-Expressing CD4 T Cells Are Increased in Primary Sjögren’s Syndrome and Are Enriched in PD-1/ICOS-Expressing Effector T Cells

    Get PDF
    Primary Sjögren’s syndrome (pSS) is an autoimmune disease characterised by B cell hyperactivity. CXCR5+ follicular helper T cells (Tfh), CXCR5-PD-1hi peripheral helper T cells (Tph) and CCR9+ Tfh-like cells have been implicated in driving B cell hyperactivity in pSS; however, their potential overlap has not been evaluated. Our aim was to study the overlap between the two CXCR5- cell subsets and to study their PD-1/ICOS expression compared to “true” CXCR5/PD-1/ICOS-expressing Tfh cells. CXCR5- Tph and CCR9+ Tfh-like cell populations from peripheral blood mononuclear cells of pSS patients and healthy controls (HC) were compared using flow cytometry. PD-1/ICOS expression from these cell subsets was compared to each other and to CXCR5+ Tfh cells, taking into account their differentiation status. CXCR5- Tph cells and CCR9+ Tfh-like cells, both in pSS patients and HC, showed limited overlap. PD-1/ICOS expression was higher in memory cells expressing CXCR5 or CCR9. However, the highest expression was found in CXCR5/CCR9 co-expressing T cells, which are enriched in the circulation of pSS patients. CXCR5- Tph and CCR9+ Tfh-like cells are two distinct cell populations that both are enriched in pSS patients and can drive B cell hyperactivity in pSS. The known upregulated expression of CCL25 and CXCL13, ligands of CCR9 and CXCR5, at pSS inflammatory sites suggests concerted action to facilitate the migration of CXCR5+CCR9+ T cells, which are characterised by the highest frequencies of PD-1/ICOS-positive cells. Hence, these co-expressing effector T cells may significantly contribute to the ongoing immune responses in pSS

    CCL5 Release by CCR9+ CD8 T Cells: A Potential Contributor to Immunopathology of Primary Sjögren’s Syndrome

    Get PDF
    Introduction: Increased CCL5 expression and CD8 T cells have been shown to be pivotal regulators of immunopathology in primary Sjögren’s syndrome (pSS) and pSS-like disease. Increased CCL5 expression by CCR9+ CD4 T cells has previously been implicated as a contributor to immunopathology in pSS. The role of CD8 T cells and in particular CCR9+ CD8 T cells and their potential to secrete CCL5 has not previously been studied in pSS. In this study we investigated both CCR9 and CCL5 expression by CD8 T cells in pSS patients compared to healthy controls (HC). Methods: CCR9 expression on CD8 T cells from peripheral blood was compared between patients with pSS and HC by flow cytometry. Intracellular CCL5 expression by naive, memory and effector CCR9- and CCR9+ CD8 T cells was assessed. In addition, the capacity and pace of CCL5 release upon T cell activation was determined for all subsets and compared with CD4 T cells. Results: The frequency of circulating CCR9+ CD8 T cells in pSS patients is increased compared to HC. Antigen-experienced CD8 T cells, especially CCR9+ effector CD8 T cells, express the highest CCL5 levels, and release the highest levels of CCL5 upon activation. Memory and effector CD8 T cells of pSS patients express significantly less CCL5 and subsequently release less CCL5 upon stimulation compared to HC. CCR9+ CD8 T cells rapidly release CCL5 and significantly more than CCR9+ CD4 T cells. Conclusion: CCR9+ CD8 T cells express more CCL5 than CCR9- CD8 T cells. CCL5 is rapidly released upon activation, resulting in reduced intracellular expression. Reduced CCL5 expression by an elevated number of antigen-experienced CCR9-expressing CD8 T cells in pSS patients points towards increased release in vivo. This suggests that CCL5 release by CCR9+ CD8 T cells contributes to immunopathology in pSS

    Leflunomide/hydroxychloroquine combination therapy targets type I IFN-associated proteins in patients with Sjögren's syndrome that show potential to predict and monitor clinical response

    Get PDF
    OBJECTIVES: To assess to what extent leflunomide (LEF) and hydroxychloroquine (HCQ) therapy in patients with primary Sjögren's syndrome (RepurpSS-I) targets type I IFN-associated responses and to study the potential of several interferon associated RNA-based and protein-based biomarkers to predict and monitor treatment. METHODS: In 21 patients treated with LEF/HCQ and 8 patients treated with placebo, blood was drawn at baseline, 8, 16 and 24 weeks. IFN-signatures based on RNA expression of five IFN-associated genes were quantified in circulating mononuclear cells and in whole blood. MxA protein levels were measured in whole blood, and protein levels of CXCL10 and Galectin-9 were quantified in serum. Differences between responders and non-responders were assessed and receiver operating characteristic analysis was used to determine the capacity of baseline expression and early changes (after 8 weeks of treatment) in biomarkers to predict treatment response at the clinical endpoint. RESULTS: IFN-signatures in peripheral blood mononuclear cell and whole blood decreased after 24 weeks of LEF/HCQ treatment, however, changes in IFN signatures only poorly correlated with changes in disease activity. In contrast to baseline IFN signatures, baseline protein concentrations of galectin-9 and decreases in circulating MxA and Galectin-9 were robustly associated with clinical response. Early changes in serum Galectin-9 best predicted clinical response at 24 weeks (area under the curve 0.90). CONCLUSIONS: LEF/HCQ combination therapy targets type-I IFN-associated proteins that are associated with strongly decreased B cell hyperactivity and disease activity. IFN-associated Galectin-9 is a promising biomarker for treatment prediction and monitoring in pSS patients treated with LEF/HCQ.</p

    Deciphering the role of cDC2s in Sjögren's syndrome: transcriptomic profile links altered antigen processes with IFN signature and autoimmunity

    Get PDF
    OBJECTIVE: Type 2 conventional dendritic cells (cDC2s) are key orchestrators of inflammatory responses, linking innate and adaptative immunity. Here we explored the regulation of immunological pathways in cDC2s from patients with primary Sjögren's syndrome (pSS). METHODS: RNA sequencing of circulating cDC2s from patients with pSS, patients with non-Sjögren's sicca and healthy controls (HCs) was exploited to establish transcriptional signatures. Phenotypical and functional validation was performed in independent cohorts. RESULTS: Transcriptome of cDC2s from patients with pSS revealed alterations in type I interferon (IFN), toll-like receptor (TLR), antigen processing and presentation pathways. Phenotypical validation showed increased CX3CR1 expression and decreased integrin beta-2 and plexin-B2 on pSS cDC2s. Functional validation confirmed impaired capacity of pSS cDC2s to degrade antigens and increased antigen uptake, including self-antigens derived from salivary gland epithelial cells. These changes in antigen uptake and degradation were linked to anti-SSA/Ro (SSA) autoantibodies and the presence of type I IFNs. In line with this, in vitro IFN-α priming enhanced the uptake of antigens by HC cDC2s, reflecting the pSS cDC2 profile. Finally, pSS cDC2s compared with HC cDC2s increased the proliferation and the expression of CXCR3 and CXCR5 on proliferating CD4 + T cells. CONCLUSIONS: pSS cDC2s are transcriptionally altered, and the aberrant antigen uptake and processing, including (auto-)antigens, together with increased proliferation of tissue-homing CD4 + T cells, suggest altered antigen presentation by pSS cDC2s. These functional alterations were strongly linked to anti-SSA positivity and the presence of type I IFNs. Thus, we demonstrate novel molecular and functional pieces of evidence for the role of cDC2s in orchestrating immune response in pSS, which may yield novel avenues for treatment

    Transcriptome Analysis of CCR9+ T Helper Cells From Primary Sjögren's Syndrome Patients Identifies CCL5 as a Novel Effector Molecule

    Get PDF
    Introduction: CCR9+ Tfh-like pathogenic T helper (Th) cells are elevated in patients with primary Sjögren's syndrome (pSS) and indicated to play a role in pSS immunopathology. Here we delineate the CCR9+ Th cell-specific transcriptome to study the molecular dysregulation of these cells in pSS patients. Methods: CCR9+, CXCR5+ and CCR9-CXCR5- Th cells from blood of 7 healthy controls (HC) and 7 pSS patients were FACS sorted and RNA sequencing was performed. Computational analysis was used to identify differentially expressed genes (DEGs), coherent gene expression networks and differentially regulated pathways. Target genes were replicated in additional cohorts. Results: 5131 genes were differentially expressed between CCR9+ and CXCR5+ Th cells; 6493 and 4783 between CCR9+ and CCR9-CXCR5- and between CXCR5+ and CCR9-CXCR5-, respectively. In the CCR9+ Th cell subset 2777 DEGs were identified between HC and pSS patients, 1416 and 1077 in the CXCR5+ and CCR9-CXCR5- subsets, respectively. One gene network was selected based on eigengene expression differences between the Th cell subsets and pathways enriched for genes involved in migration and adhesion, cytokine and chemokine production. Selected DEGs of interest (HOPX, SOX4, ITGAE, ITGA1, NCR3, ABCB1, C3AR1, NT5E, CCR5 and CCL5) from this module were validated and found upregulated in blood CCR9+ Th cells, but were similarly expressed in HC and pSS patients. Increased frequencies of CCR9+ Th cells were shown to express higher levels of CCL5 than CXCR5+ and CCR9-CXCR5- Th cells, with the highest expression confined to effector CCR9+ Th cells. Antigenic triggering and stimulation with IL-7 of the Th cell subsets co-cultured with monocytes strongly induced CCL5 secretion in CCR9+ Th cell cocultures. Additionally, effector CCR9+ Th cells rapidly released CCL5 and secreted the highest CCL5 levels upon stimulation. Conclusion: Transcriptomic analysis of circulating CCR9+ Th cells reveals CCR9-specific pathways involved in effector T cell function equally expressed in pSS patients and HC. Given the increased numbers of CCR9+ Th cells in the blood and inflamed glands of pSS patients and presence of inflammatory stimuli to activate these cells this suggests that CCR9-specific functions, such as cell recruitment upon CCL5 secretion, could significantly contribute to immunopathology in pSS

    Circulating small non-coding RNAs reflect IFN status and B cell hyperactivity in patients with primary Sj\uf6gren's syndrome

    Get PDF
    BackgroundConsidering the important role of miRNAs in the regulation of post-transcriptional expression of target genes, we investigated circulating small non-coding RNAs (snc) RNA levels in patients with primary Sjogren's syndrome (pSS). In addition we assessed if serum sncRNA levels can be used to differentiate patients with specific disease features.MethodsSerum RNA was isolated from 37 pSS patients as well as 21 patients with incomplete Sjogren's Syndrome (iSS) and 17 healthy controls (HC) allocated to two independent cohorts: discovery and validation. OpenArray profiling of 758 sncRNAs was performed in the discovery cohort. Selected sncRNAs were measured in the validation cohort using single-assay RT-qPCR. In addition, unsupervised hierarchical clustering was performed within the pSS group.ResultsTen sncRNAs were differentially expressed between the groups in the array. In the validation cohort, we confirmed the increased expression of U6-snRNA and miR-661 in the iSS group as compared to HC. We were unable to validate differential expression of any miRNAs in the pSS group. However, within this group several miRNAs correlated with laboratory parameters. Unsupervised clustering distinguished three clusters of pSS patients. Patients in one cluster showed significantly higher serum IgG, prevalence of anti-SSB autoantibodies, IFN-score, and decreased leukocyte counts compared to the two other clusters.ConclusionWe were unable to identify any serum sncRNAs with differential expression in pSS patients. However, we show that circulating miRNA levels are associated with disease parameters in pSS patients and can be used to distinguish pSS patients with more severe B cell hyperactivity. As several of these miRNAs are implicated in the regulation of B cells, they may play a role in the perpetuation of the disease

    The Transcriptomic Profile of Monocytes from Patients With Sjögren's Syndrome Is Associated With Inflammatory Parameters and Is Mimicked by Circulating Mediators

    Get PDF
    Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by infiltration of the exocrine glands and prominent B cell hyperactivity. Considering the key role of monocytes in promoting B cell hyperactivity, we performed RNA-sequencing analysis of CD14+ monocytes from patients with pSS, non-Sjögren's sicca (nSS), and healthy controls (HC). We demonstrated that the transcriptomic profile of pSS patients is enriched in intermediate and non-classical monocyte profiles, and confirmed the increased frequency of non-classical monocytes in pSS patients by flow-cytometry analysis. Weighted gene co-expression network analysis identified four molecular signatures in monocytes from pSS patients, functionally annotated for processes related with translation, IFN-signaling, and toll-like receptor signaling. Systemic and local inflammatory features significantly correlated with the expression of these signatures. Furthermore, genes highly associated with clinical features in pSS were identified as hub-genes for each signature. Unsupervised hierarchical cluster analysis of the hub-genes identified four clusters of nSS and pSS patients, each with distinct inflammatory and transcriptomic profiles. One cluster showed a significantly higher percentage of pSS patients with higher prevalence of anti-SSA autoantibodies, interferon-score, and erythrocyte sedimentation rate compared to the other clusters. Finally, we showed that the identified transcriptomic differences in pSS monocytes were induced in monocytes of healthy controls by exposure to serum of pSS patients. Representative hub-genes of all four signatures were partially inhibited by interferon-α/β receptor blockade, indicating that the circulating inflammatory mediators, including type I interferons have a significant contribution to the altered transcriptional profile of pSS-monocytes. Our study suggests that targeting key circulating inflammatory mediators, such as type I interferons, could offer new insights into the important pathways and mechanisms driving pSS, and holds promise for halting immunopathology in Sjögren's Syndrome

    Leflunomide/hydroxychloroquine combination therapy targets type I IFN-associated proteins in patients with Sjögren's syndrome that show potential to predict and monitor clinical response

    Get PDF
    Objectives To assess to what extent leflunomide (LEF) and hydroxychloroquine (HCQ) therapy in patients with primary Sjögren's syndrome (RepurpSS-I) targets type I IFN-associated responses and to study the potential of several interferon associated RNA-based and protein-based biomarkers to predict and monitor treatment. Methods In 21 patients treated with LEF/HCQ and 8 patients treated with placebo, blood was drawn at baseline, 8, 16 and 24 weeks. IFN-signatures based on RNA expression of five IFN-associated genes were quantified in circulating mononuclear cells and in whole blood. MxA protein levels were measured in whole blood, and protein levels of CXCL10 and Galectin-9 were quantified in serum. Differences between responders and non-responders were assessed and receiver operating characteristic analysis was used to determine the capacity of baseline expression and early changes (after 8 weeks of treatment) in biomarkers to predict treatment response at the clinical endpoint. Results IFN-signatures in peripheral blood mononuclear cell and whole blood decreased after 24 weeks of LEF/HCQ treatment, however, changes in IFN signatures only poorly correlated with changes in disease activity. In contrast to baseline IFN signatures, baseline protein concentrations of galectin-9 and decreases in circulating MxA and Galectin-9 were robustly associated with clinical response. Early changes in serum Galectin-9 best predicted clinical response at 24 weeks (area under the curve 0.90). Conclusions LEF/HCQ combination therapy targets type-I IFN-associated proteins that are associated with strongly decreased B cell hyperactivity and disease activity. IFN-associated Galectin-9 is a promising biomarker for treatment prediction and monitoring in pSS patients treated with LEF/HCQ

    How immunological profle drives clinical phenotype of primary Sjögren’s syndrome at diagnosis: analysis of 10,500 patients (Sjögren Big Data Project)

    Get PDF
    To evaluate the influence of the main immunological markers on the disease phenotype at diagnosis in a large international cohort of patients with primary Sjögren´s syndrome (SjS).METHODS:The Big Data Sjögren Project Consortium is an international, multicentre registry created in 2014. As a first step, baseline clinical information from leading centres on clinical research in SjS of the 5 continents was collected. The centres shared a harmonised data architecture and conducted cooperative online efforts in order to refine collected data under the coordination of a big data statistical team. Inclusion criteria were the fulfillment of the 2002 classification criteria. Immunological tests were carried out using standard commercial assays.RESULTS:By January 2018, the participant centres had included 10,500 valid patients from 22 countries. The cohort included 9,806 (93%) women and 694 (7%) men, with a mean age at diagnosis of primary SjS of 53 years, mainly White (78%) and included from European countries (71%). The frequency of positive immunological markers at diagnosis was 79.3% for ANA, 73.2% for anti-Ro, 48.6% for RF, 45.1% for anti- La, 13.4% for low C3 levels, 14.5% for low C4 levels and 7.3% for cryoglobulins. Positive autoantibodies (ANA, Ro, La) correlated with a positive result in salivary gland biopsy, while hypocomplementaemia and especially cryoglo-bulinaemia correlated with systemic activity (mean ESSDAI score of 17.7 for cryoglobulins, 11.3 for low C3 and 9.2 for low C4, in comparison with 3.8 for negative markers). The immunological markers with a great number of statistically-significant associations (p<0.001) in the organ-by-organ ESS- DAI evaluation were cryoglobulins (9 domains), low C3 (8 domains), anti-La (7 domains) and low C4 (6 domains).CONCLUSIONS:We confirm the strong influence of immunological markers on the phenotype of primary SjS at diagnosis in the largest multi-ethnic international cohort ever analysed, with a greater influence for cryoglobulinaemic-related markers in comparison with Ro/La autoantibodies and ANA. Immunological patterns play a central role in the phenotypic expression of the disease already at the time of diagnosis, and may guide physicians to design a specific personalised management during the follow-up of patients with primary SjS.Fil: Brito Zerón, Pilar. Hospital Sanitas CIMA; España. Universidad de Barcelona; EspañaFil: Acar Denizli, Nihan. Mimar Sinan Fine Arts University; TurquíaFil: Ng, Wan Fai. University of Newcastle; Reino UnidoFil: Zeher, Margit. University of Debrecen; HungríaFil: Rasmussen, Astrid. Oklahoma Medical Research Foundation; Estados UnidosFil: Mandl, Thomas. Lund University; SueciaFil: Seror, Raphaele. Université Paris Sud; FranciaFil: Xiaolin, Li. Anhui Provincial Hospital; ChinaFil: Baldini, Chiara. Università degli Studi di Pisa; ItaliaFil: Gottenberg, Jaques. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Danda, Debashish. Christian Medical College & Hospital; IndiaFil: Quartuccio, Luca. University Hospital “Santa María della Misericordia”; ItaliaFil: Priori, Roberta. Università degli Studi di Roma "La Sapienza"; ItaliaFil: Hernandez Molina, Gabriela. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; MéxicoFil: Armagan, Berkan. Hacettepe University. Faculty of Medicine.Department of Internal Medicine; TurquíaFil: Kruize, Aike. University Medical Center Utrecht; Países BajosFil: Kwok, Seung Ki. The Catholic University of Korea; Corea del SurFil: Kvarnström, Marika. Karolinska University Hospital.Department of Medicine.Unit of Rheumatology. Karolinska Institutet ; SueciaFil: Praprotnik, Sonja. University Medical Centre; EsloveniaFil: Sene, Damien. Université Paris Diderot - Paris 7; FranciaFil: Bartoloni, Elena. Università di Perugia; ItaliaFil: Solans, R.. Hospital Vall d’Hebron; ItaliaFil: Rischmueller, M.. University of Western Australia; AustraliaFil: Suzuki, Y.. Kanazawa University Hospital; JapónFil: Isenberg, D. A.. University College London; Estados UnidosFil: Valim, V.. Federal University of Espírito Santo; BrasilFil: Wiland, P.. Wroclaw Medical Hospital; PoloniaFil: Nordmark, G.. Uppsala Universitet; SueciaFil: Fraile, G.. Hospital Ramón y Cajal; EspañaFil: Retamozo, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de Córdoba. Instituto de Investigaciones en Ciencias de la Salud; Argentina. Hospital Privado Centro Medico de Córdoba; Argentina; Argentina. Instituto Universitario de Ciencias Biomédicas de Córdoba; Argentin
    corecore