23 research outputs found
Amine Metabolism Is Influenced by Dietary Protein Source
Growth in world population will inevitably leads to increased demand for protein for humans and animals. Protein from insects and blood plasma are being considered as possible alternatives, but more research on their nutritional quality and health effects is needed. Here, we studied the effect of dietary protein source on metabolism and metabolic amine profiles in serum and urine of mice. Groups of mice were fed semi-purified diets containing 300 g/kg of soybean meal, casein, partially delactosed whey powder, spray-dried plasma protein, wheat gluten meal, and yellow mealworm. Feed and water intake as well as body weight gain were measured for 28 days. After 14 and 28 days, serum and urine samples were collected for measurement of a large panel of amine metabolites. MetaboAnalyst 3.0 was used for analysis of the raw metabolic data. Out of 68 targeted amine metabolites, we could detect 54 in urine and 41 in blood serum. Dietary protein sources were found to have profound effects on host metabolism, particularly in systemic amine profiles, considered here as an endophenotype. We recommend serum over urine to screen for the amine metabolic endophenotype based on partial least squares discriminant analysis. We concluded that metabolites like alpha-aminobutyric acid and 1-methylhistidine are sensitive indicators of too much or too little availability of specific amino acids in the different protein diets. Furthermore, we concluded that amine metabolic profiles can be useful for assessing the nutritional quality of different protein sources
Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice
Abundant amounts of cholesteryl ester transfer protein (CETP) are found in macrophage-derived foam cells in the arterial wall, but its function in atherogenesis is unknown. To investigate the role of macrophage CETP in atherosclerosis, LDL receptor knockout mice were transplanted with bone marrow from CETP transgenic mice, which express the human CETP transgene under control of its natural promoter and major regulatory elements. CETP production by bone marrow-derived cells induced a 1.8-fold (P <0.01) increase in atherosclerotic lesion development. The increase in lesion size coincided with an increase in VLDL/LDL cholesterol and a decrease in HDL cholesterol. The cholesterol redistribution in serum was a direct effect of the substantial serum CETP activity and mass (38 +/- 3 nmol/mL/h and 4.8 +/- 0.5 mu g/mL, respectively) induced by CETP production by bone marrow-derived cells. Conversely, specific disruption of CETP production by bone marrow-derived cells in CETP transgenic mice resulted in a approximate to 2-fold (P <0.0001) reduction in serum CETP activity and mass, demonstrating the quantitative relevance of bone marrow-derived CETP. Finally, we show that in liver Kupffer cells, hepatic macrophages, contribute approximate to 50% to the total hepatic CETP expression. In conclusion, bone marrow-derived CETP induces a proatherogenic lipoprotein profile and promotes the development of atherosclerotic lesions in LDL receptor knockout mice. Most importantly, we show for the first time that bone marrow-derived CETP is an important contributor to total serum CETP activity and mass
Increased oxidative stress in scavenger receptor BI knockout mice with dysfunctional HDL
Objective-In the current study the effect of disruption of SR-BI, a prominent regulator of HDL metabolism, on the activity of the HDL-associated antioxidant enzymes PON1 and PAF-AH as well as in vivo oxidative stress were investigated. Methods and Results-SR-BI deficiency resulted in 1.4-fold (P Conclusion-SR-BI deficiency results in a reduced activity of the antioxidant enzyme PON1 and a significant increase in oxidative stress, potentially contributing to the proatherogenic effect of SR-BI deficiency
Dietary protein sources differentially affect microbiota, mTOR activity and transcription of mTOR signaling pathways in the small intestine
Dietary protein sources can have profound effects on host-microbe interactions in the gut that are critically important for immune resilience. However more knowledge is needed to assess the impact of different protein sources on gut and animal health. Thirty-six wildtype male C57BL/6J mice of 35 d age (n = 6/group; mean ± SEM body weight 21.9 ± 0.25 g) were randomly assigned to groups fed for four weeks with semi synthetic diets prepared with one of the following protein sources containing (300 g/kg as fed basis): soybean meal (SBM), casein, partially delactosed whey powder, spray dried plasma protein, wheat gluten meal and yellow meal worm. At the end of the experiment, mice were sacrificed to collect ileal tissue to acquire gene expression data, and mammalian (mechanistic) target of rapamycin (mTOR) activity, ileal digesta to study changes in microbiota and serum to measure cytokines and chemokines. By genome-wide transcriptome analysis, we identified fourteen high level regulatory genes that are strongly affected in SBM-fed mice compared to the other experimental groups. They mostly related to the mTOR pathway. In addition, an increased (P < 0.05) concentration of granulocyte colony-stimulating factor was observed in serum of SBM-fed mice compared to other dietary groups. Moreover, by 16S rRNA sequencing, we observed that SBM-fed mice had higher (P < 0.05) abundances of Bacteroidales family S24-7, compared to the other dietary groups. We showed that measurements of genome-wide expression and microbiota composition in the mouse ileum reveal divergent responses to diets containing different protein sources, in particular for a diet based on SBM