558 research outputs found

    Quantization of bosonic fields with two mass and spin states

    Full text link
    We investigate bosonic fields possessing two mass and spin states. The density matrix in the first order formalism is obtained. The quantization of fields in the first order formulation is performed and propagators are found.Comment: 9 page

    Field theory of massive and massless vector particles in the Duffin - Kemmer - Petiau formalism

    Full text link
    Field theory of massive and massless vector particles is considered in the first-order formalism. The Hamiltonian form of equations is obtained after the exclusion of non-dynamical components. We obtain the canonical and symmetrical Belinfante energy-momentum tensors and their nonzero traces. We note that the dilatation symmetry is broken in the massive case but in the massless case the modified dilatation current is conserved. The canonical quantization is performed and the propagator of the massive fields is found in the Duffin - Kemmer - Petiau formalism.Comment: 20 pages, typos corrected, a reference added, journal version, accepted in Int.J.Mod.Phys.

    "Square Root" of the Proca Equation: Spin-3/2 Field Equation

    Full text link
    New equations describing particles with spin 3/2 are derived. The non-local equation with the unique mass can be considered as "square root" of the Proca equation in the same sense as the Dirac equation is related to the Klein-Gordon-Fock equation. The local equation describes spin 3/2 particles with three mass states. The equations considered involve fields with spin-3/2 and spin-1/2, i.e. multi-spin 1/2, 3/2. The projection operators extracting states with definite energy, spin, and spin projections are obtained. All independent solutions of the local equation are expressed through projection matrices. The first order relativistic wave equation in the 20-dimensional matrix form, the relativistically invariant bilinear form and the corresponding Lagrangian are given. Two parameters characterizing non-minimal electromagnetic interactions of fermions are introduced, and the quantum-mechanical Hamiltonian is found. It is proved that there is only causal propagation of waves in the approach considered.Comment: 17 pages, corrections in Eqs. (50), (51

    Solutions of Podolsky's Electrodynamics Equation in the First-Order Formalism

    Full text link
    The Podolsky generalized electrodynamics with higher derivatives is formulated in the first-order formalism. The first-order relativistic wave equation in the 20-dimensional matrix form is derived. We prove that the matrices of the equation obey the Petiau-Duffin-Kemmer algebra. The Hermitianizing matrix and Lagrangian in the first-order formalism are given. The projection operators extracting solutions of field equations for states with definite energy-momentum and spin projections are obtained, and we find the density matrix for the massive state. The 13×1313\times 13-matrix Schrodinger form of the equation is derived, and the Hamiltonian is obtained. Projection operators extracting the physical eigenvalues of the Hamiltonian are found.Comment: 17 pages, minor corrections, published versio

    On superluminal fermions within the second derivative equation

    Full text link
    We postulate the second-order derivative equation with four parameters for spin-1/2 fermions possessing two mass states. For some choice of parameters fermions propagate with the superluminal speed. Thus, the novel tachyonic equation is suggested. The relativistic 20-component first-order wave equation is formulated and projection operators extracting states with definite energy and spin projections are obtained. The Lagrangian formulation of the first-order equation is presented and the electric current and energy-momentum tensor are found. The minimal and non-minimal electromagnetic interactions of fermions are considered and Schr\"{o}dinger's form of the equation and the quantum-mechanical Hamiltonian are obtained. The canonical quantization of the field in the first-order formalism is performed and we find the vacuum expectation of chronological pairing of operators.Comment: 21 pages, minor corrections, journal version, accepted in IJMP

    Kalb-Ramond fields in the Petiau-Duffin-Kemmer formalism and scale invariance

    Full text link
    Kalb-Ramond equations for massive and massless particles are considered in the framework of the Petiau-Duffin-Kemmer formalism. We obtain 10×1010\times10 matrices of the relativistic wave equation of the first-order and solutions in the form of density matrix. The canonical and Belinfante energy-momentum tensors are found. We investigate the scale invariance and obtain the conserved dilatation current. It was demonstrated that the conformal symmetry is broken even for massless fields.Comment: 9 pages, no figure

    Effective Lagrangian and Dynamical Symmetry Breaking in the SU(2)XU(1) NJL Model

    Full text link
    Dynamical symmetry breaking and the formation of scalar condensates in the SU(2)XU(1) Nambu-Jona-Lasinio model with two coupling constants has been studied in the framework of the mean field approximation. The bosonization procedures of the model are performed using the functional integration method. The possibility of the spontaneous CP symmetry breaking in the model under consideration has been shown. The mass spectrum of the bound states of fermions, as well as the effective Lagrangian of interacting scalar and pseudoscalar mesons are obtained.Comment: 7 pages, LaTeX. Minor correction

    The multiplicity and the spectra of secondaries correlated with the leading particle energy

    Get PDF
    The spectra of leading particles of different nature in pp-collisions at E sub 0 = 33 GeV are obtained. The multiplicities and the spectra of secondaries, mesons, gamma-quanta, lambda and lambda-hyperons and protons for different leading particle energy ranges are determined

    Phase diagram of Nambu-Jona-Lasinio model with dimensional regularization

    Full text link
    We investigate the phase diagram on temperature-chemical potential plane in the Nambu-Jona-Lasinio model with the dimensional regularization. While the structure of the resulting diagram shows resemblance to the one in the frequently used cutoff regularization, some results of our study indicate striking difference between these regularizations. The diagram in the dimensional regularization exhibits strong tendency of the first order phase transition.Comment: 9 pages, 9 figure

    Charge Radii and Magnetic Polarizabilities of the Rho and K* Mesons in QCD String Theory

    Full text link
    The effective action for light mesons in the external uniform static electromagnetic fields was obtained on the basis of QCD string theory. We imply that in the presence of light quarks the area law of the Wilson loop integral is valid. The approximation of the Nambu-Goto straight-line string is used to simplify the problem. The Coulomb-like short-range contribution which goes from one-gluon exchange is also neglected. We do not take into account spin-orbital and spin-spin interactions of quarks and observe the ρ\rho and KK^* mesons. The wave function of the meson ground state is the Airy function. Using the virial theorem we estimate the mean charge radii of mesons in terms of the string tension and the Airy function zero. On the basis of the perturbative theory, in the small external magnetic field we find the diamagnetic polarizabilities of ρ\rho and KK^* mesons: βρ=0.8×104fm3\beta_\rho =-0.8\times 10^{-4} {fm}^3, βK=0.57×104fm3\beta_{K^*}=-0.57\times 10^{-4} {fm}^3Comment: 22 pages, no figures, in LaTeX 2.09, typos correcte
    corecore