slides

On superluminal fermions within the second derivative equation

Abstract

We postulate the second-order derivative equation with four parameters for spin-1/2 fermions possessing two mass states. For some choice of parameters fermions propagate with the superluminal speed. Thus, the novel tachyonic equation is suggested. The relativistic 20-component first-order wave equation is formulated and projection operators extracting states with definite energy and spin projections are obtained. The Lagrangian formulation of the first-order equation is presented and the electric current and energy-momentum tensor are found. The minimal and non-minimal electromagnetic interactions of fermions are considered and Schr\"{o}dinger's form of the equation and the quantum-mechanical Hamiltonian are obtained. The canonical quantization of the field in the first-order formalism is performed and we find the vacuum expectation of chronological pairing of operators.Comment: 21 pages, minor corrections, journal version, accepted in IJMP

    Similar works

    Full text

    thumbnail-image

    Available Versions