90 research outputs found

    Caspase-10 Is the Key Initiator Caspase Involved in Tributyltin-Mediated Apoptosis in Human Immune Cells

    Get PDF
    Tributyltin (TBT) is one of the most toxic compounds produced by man and distributed in the environment. A multitude of toxic activities have been described, for example, immunotoxic, neurotoxic, and endocrine disruptive effects. Moreover, it has been shown for many cell types that they undergo apoptosis after treatment with TBT and the cell death of immune cells could be the molecular background of its immunotoxic effect. As low as 200 nM up to 1 μM of TBT induces all signs of apoptosis in Jurkat T cells within 1 to 24 hrs of treatment. When compared to Fas-ligand control stimulation, the same sequence of events occurs: membrane blebbing, phosphatidylserine externalisation, the activation of the “death-inducing signalling complex,” and the following sequence of cleavage processes. In genetically modified caspase-8-deficient Jurkat cells, the apoptotic effects are only slightly reduced, whereas, in FADD-negative Jurkat cells, the TBT effect is significantly diminished. We could show that caspase-10 is recruited by the TRAIL-R2 receptor and apoptosis is totally prevented when caspase-10 is specifically inhibited in all three cell lines

    Editorial: Methods and protocols in nanotoxicology

    Get PDF

    The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During production and processing of multi-walled carbon nanotubes (MWCNTs), they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment.</p> <p>Results</p> <p>To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH<sub>2</sub>)- and carboxyl (-COOH)-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant.</p> <p>Conclusions</p> <p>A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.</p

    Conserved Growth on Vicinal Surfaces

    Full text link
    A crystal surface which is miscut with respect to a high symmetry plane exhibits steps with a characteristic distance. It is argued that the continuum description of growth on such a surface, when desorption can be neglected, is given by the anisotropic version of the conserved KPZ equation (T. Sun, H. Guo, and M. Grant, Phys. Rev. A 40, 6763 (1989)) with non-conserved noise. A one--loop dynamical renormalization group calculation yields the values of the dynamical exponent and the roughness exponent which are shown to be the same as in the isotropic case. The results presented here should apply in particular to growth under conditions which are typical for molecular beam epitaxy.Comment: 10 pages, uses revte

    Growth of Patterned Surfaces

    Full text link
    During epitaxial crystal growth a pattern that has initially been imprinted on a surface approximately reproduces itself after the deposition of an integer number of monolayers. Computer simulations of the one-dimensional case show that the quality of reproduction decays exponentially with a characteristic time which is linear in the activation energy of surface diffusion. We argue that this life time of a pattern is optimized, if the characteristic feature size of the pattern is larger than (D/F)1/(d+2)(D/F)^{1/(d+2)}, where DD is the surface diffusion constant, FF the deposition rate and dd the surface dimension.Comment: 4 pages, 4 figures, uses psfig; to appear in Phys. Rev. Let

    Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human placental perfusion model

    Get PDF
    BACKGROUND: Nanoparticle exposure in utero might not be a major concern yet, but it could become more important with the increasing application of nanomaterials in consumer and medical products. Several epidemiologic and in vitro studies have shown that nanoparticles can have potential toxic effects. However, nanoparticles also offer the opportunity to develop new therapeutic strategies to treat specifically either the pregnant mother or the fetus. Previous studies mainly addressed whether nanoparticles are able to cross the placental barrier. However, the transport mechanisms underlying nanoparticle translocation across the placenta are still unknown. OBJECTIVES: In this study we examined which transport mechanisms underlie the placental transfer of nanoparticles. METHODS: We used the ex vivo human placental perfusion model to analyze the bidirectional transfer of plain and carboxylate modified polystyrene particles in a size range between 50 and 300 nm. RESULTS: We observed that the transport of polystyrene particles in the fetal to maternal direction was significantly higher than for the maternal to fetal direction. Regardless of their ability to cross the placental barrier and the direction of perfusion, all polystyrene particles accumulated in the syncytiotrophoblast of the placental tissue. CONCLUSIONS: Our results indicate that the syncytiotrophoblast is the key player in regulating nanoparticle transport across the human placenta. The main mechanism underlying this translocation is not based on passive diffusion, but is likely to involve an active, energy-dependent transport pathway. These findings will be important for reproductive toxicology as well as for pharmaceutical engineering of new drug carriers. CITATION: Grafmueller S, Manser P, Diener L, Diener PA, Maeder-Althaus X, Maurizi L, Jochum W, Krug HF, Buerki-Thurnherr T, von Mandach U, Wick P. 2015. Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human placental perfusion model. Environ Health Perspect 123:1280-1286; http://dx.doi.org/10.1289/ehp.1409271

    NM-300 Silver Characterisation, Stability, Homogeneity

    Get PDF
    This report describes the characteriation of NM-300, a nano-silver reference material used in the context of risk and exposure assessment studies. The material was produced in the context of the JRC IHCP activity on nano-materials. A representative set test items was handed over to the JRC IES analytical laboratory for further characterisation. First, inorganic chemical characterisation of the total silver content and the homogeneity of the Ag-distribution was done using ICP-AES. To this end, a dedicated method was developed and validated according to the requirements laid down in ISO 17025. This works were completed by different types of microscopy analyses (Scanning Electron Microscope, Transmission Electron Microscope and Nanoparticle Tracking Analysis) performed in close collaboration with the German Institute of Energy and Environmental Technology e.V. (IUTA), the Swiss Federal Laboratories for Materials Science and Technology (EMPA) and Belgium Veterinary and Agrochemical Research Centre (VAR). This report summarises all technical details and discusses the assessments made.JRC.DG.I.5-Nanobioscience
    corecore