4,093 research outputs found

    Extended emotions

    Get PDF
    Until recently, philosophers and psychologists conceived of emotions as brain- and body-bound affairs. But researchers have started to challenge this internalist and individualist orthodoxy. A rapidly growing body of work suggests that some emotions incorporate external resources and thus extend beyond the neurophysiological confines of organisms; some even argue that emotions can be socially extended and shared by multiple agents. Call this the extended emotions thesis. In this article, we consider different ways of understanding ExE in philosophy, psychology, and the cognitive sciences. First, we outline the background of the debate and discuss different argumentative strategies for ExE. In particular, we distinguish ExE from cognate but more moderate claims about the embodied and situated nature of cognition and emotion. We then dwell upon two dimensions of ExE: emotions extended by material culture and by the social factors. We conclude by defending ExE against some objections and point to desiderata for future research

    Decoherence effects in reactor and Gallium neutrino oscillation experiments -- a QFT approach

    Get PDF
    We adopt the quantum field theoretical method to calculate the amplitude and event rate for a neutrino oscillation experiment, considering neutrino production, propagation and detection as a single process. This method allows to take into account decoherence effects in the transition amplitude induced by the quantum mechanical uncertainties of all particles involved in the process. We extend the method to include coherence loss due to interactions with the environment, similar to collisional line broadening. In addition to generic decoherence induced at the amplitude level, the formalism allows to include, in a straightforward way, additional damping effects related to phase-space integrals over momenta of unobserved particles as well as other classical averaging effects. We apply this method to neutrino oscillation searches at reactor and Gallium experiments and confirm that quantum decoherence is many orders of magnitudes smaller than classical averaging effects and therefore unobservable. The method used here can be applied with minimal modifications also to other types of oscillation experiments, e.g., accelerator based beam experiments.Comment: 20 pages + 3 appendices and reference

    Motor unit identification in two neighboring recording positions of the human trapezius muscle during prolonged computer work

    Get PDF
    Work-related shoulder-neck pain is a major health risk in computer operators. To understand the physiological mechanisms behind the development of these disorders, EMG recordings of some minutes up to several hours must be accurately decomposed. For this reason we developed EMG-LODEC, an automatic decomposition software program, especially designed for multi-channel long-term recordings of signals detected during slight muscle movements. The subjects executed a 30-min computer task to simulate real work conditions while working at an ergonomically designed workstation. Six-channel intramuscular EMG signals were recorded from two positions of the upper trapezius muscle. The EMG signals were decomposed into individual motor unit action potential trains using EMG-LODEC. The study design enabled us first to study the dependence of intramuscular analysis on the insertion points and second to test the accuracy of the decomposition technique under laboratory conditions during a real experiment. The two positions yielded 887 motor units - 452 located in position 1 and 435 in position 2. Although the numbers of detected action potentials were strongly correlated between the two insertion positions, different motor units were mostly recorded. In particular, the detection of continuously active motor units is specific for the selected insertion points and may not be representative of a muscle, not even for parts with common functions. The approach for the quantitative evaluation of the decomposition technique was to independently decompose two signals that were simultaneously detected by separate sets of wire electrodes placed close to each other in the muscle. Common trains discovered in each signal were compared for consistency. A cross-correlation analysis was performed to find corresponding motor unit pairs that were concurrently active. Concurrently active motor units were found in six subjects. For these motor units the extent of simultaneous occurrence of motor unit action potentials between the two positions ranged from 23% to 78% depending on the distinction of the single motor units and the number of superimposed motor unit action potentials. High concordance was seen in 3 out of the 15 motor unit pairs. Based on the results, EMG-LODEC is capable of providing reliable decompositions with satisfying accuracy and reasonable processing time. EMG-LODEC is suitable for the study of motor unit discharge patterns and recruitment order in subjects with and without musculoskeletal pain during long-term measurements to study work-related musculoskeletal disorder

    Firm Size, P/E, Timeliness Rankings, and Neglect Among Firms Analyzed by Value Line

    Get PDF
    Thomas M. Krueger is Associate Professor of Finance at the University of Wisconsin-La Crosse. Keith H. Johnson is an Associate Professor of Finance at the University of Kentucky
    • …
    corecore