120 research outputs found

    Quantum Dynamics of Electron-Nuclei Coupled System in Quantum Dots

    Full text link
    We have investigated the dynamics of the electron-nuclei coupled system in quantum dots. The bunching of results of the electron spin measurements and the revival in the conditional probabilities are salient features of the nuclear spin memory. The underlying mechanism is the squeezing of the nuclear spin state and the correlations between the successive electron spin measurements. Further we make a proposal for the preparation and detection of superposition states of nuclear spins merely relying on electron spin measurements. For unpolarized, completely random nuclear spin state one can still trace the quantum interference effects. We discuss the realization of these schemes for electron spins on both single and double QDs.Comment: 4 pages,3 figure

    Cyclotron-resonant exciton transfer between the nearly free and strongly localized radiative states of a two-dimensional hole gas in a high magnetic field

    Full text link
    Avoided crossing of the emission lines of a nearly free positive trion and a cyclotron replica of an exciton bound to an interface acceptor has been observed in the magneto-photoluminescence spectra of p-doped GaAs quantum wells. Identification of the localized state depended on the precise mapping of the anti-crossing pattern. The underlying coupling is caused by an exciton transfer combined with a resonant cyclotron excitation of an additional hole. The emission spectrum of the resulting magnetically tunable coherent state probes weak localization in the quantum well.Comment: 5 pages, 5 figure

    Polarization Properties of Single Quantum Dots in Nanowires

    Full text link
    We study the absorption and emission polarization of single semiconductor quantum dots in semiconductor nanowires. We show that the polarization of light absorbed or emitted by a nanowire quantum dot strongly depends on the orientation of the nanowire with respect to the directions along which light is incident or emitted. Light is preferentially linearly polarized when directed perpendicular to the nanowire elongation. In contrast, the degree of linear polarization is low for light directed along the nanowire. This result is vital for photonic applications based on intrinsic properties of quantum dots, such as generation of entangled photons. As an example, we demonstrate optical access to the spin states of a single nanowire quantum dot.Comment: 4 pages, 4 figure

    Spin relaxation in the impurity band of a semiconductor in the external magnetic field

    Full text link
    Spin relaxation in the impurity band of a 2D semiconductor with spin-split spectrum in the external magnetic field is considered. Several mechanisms of spin relaxation are shown to be relevant. The first one is attributed to phonon-assisted transitions between Zeeman sublevels of the ground state of an isolated impurity, while other mechanisms can be described in terms of spin precession in a random magnetic field during the electron motion over the impurity band. In the later case there are two contributions to the spin relaxation: the one given by optimal impurity configurations with the hop-waiting time inversely proportional to the external magnetic field and another one related to the electron motion on a large scale. The average spin relaxation rate is calculated

    Hyperfine interaction in InAs/GaAs self-assembled quantum dots : dynamical nuclear polarization versus spin relaxation

    Get PDF
    We report on the influence of hyperfine interaction on the optical orientation of singly charged excitons X+ and X- in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50kHz modulated excitation polarization, which becomes however strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ~4 T) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Eventually, we emphasize the similarities and differences between X+ and X- trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description.Comment: 10 pages, 5 figure

    Dynamics of impurity, local and non-local information for two non identical qubits

    Full text link
    From the separability point of view the problem of two atoms interact with a single cavity mode is investigated. The density matrix is calculated and used to discuss the entanglement and to examine the dynamics of the local and non-local information. Our examination concentrated on the variation in the mean photon number and the ratio of the coupling parameters. Furthermore, we have also assumed that the atomic system is initially in the ground states as well as in the intermediate states. It has been shown that the local information is transferred to non-local information when the impurity of one qubit or both is maximum

    Observation of Faraday rotation from a single confined spin

    Get PDF
    Ability to read-out the state of a single confined spin lies at the heart of solid-state quantum information processing. While all-optical spin measurements using Faraday rotation has been successfully implemented in ensembles of semiconductor spins, read-out of a single semiconductor spin has only been achieved using transport measurements based on spin-charge conversion. Here, we demonstrate an all-optical dispersive measurement of the spin-state of a single electron trapped in a semiconductor quantum dot. We obtain information on the spin state through conditional Faraday rotation of a spectrally detuned optical field, induced by the polarization- and spin-selective trion (charged quantum dot) transitions. To assess the sensitivity of the technique, we use an independent resonant laser for spin-state preparation. An all-optical dispersive measurement on single spins has the important advantage of channeling the measurement back-action onto a conjugate observable, thereby allowing for repetitive or continuous quantum nondemolition (QND) read-out of the spin-state. We infer from our results that there are of order unity back-action induced spin-flip Raman scattering events within our measurement timescale. Therefore, straightforward improvements such as the use of a solid-immersion lens and higher efficiency detectors would allow for back-action evading spin measurements, without the need for a cavity

    Towards coherent optical control of a single hole spin: rabi rotation of a trion conditional on the spin state of the hole

    Get PDF
    A hole spin is a potential solid-state q-bit, that may be more robust against nuclear spin induced dephasing than an electron spin. Here we propose and demonstrate the sequential preparation, control and detection of a single hole spin trapped on a self-assembled InGaAs/GaAs quantum dot. The dot is embedded in a photodiode structure under an applied electric field. Fast, triggered, initialization of a hole spin is achieved by creating a spin-polarized electron-hole pair with a picosecond laser pulse, and in an applied electric field, waiting for the electron to tunnel leaving a spin-polarized hole. Detection of the hole spin with picoseconds time resolution is achieved using a second picosecond laser pulse to probe the positive trion transition, where a trion is created conditional on the hole spin being detected as a change in photocurrent. Finally, using this setup we observe a Rabi rotation of the hole-trion transition that is conditional on the hole spin, which for a pulse area of 2 pi can be used to impart a phase shift of pi between the hole spin states, a non-general manipulation of the hole spin. (C) 2009 Elsevier Ltd. All rights reserved

    Triplet-Singlet Spin Relaxation via Nuclei in a Double Quantum Dot

    Full text link
    The spin of a confined electron, when oriented originally in some direction, will lose memory of that orientation after some time. Physical mechanisms leading to this relaxation of spin memory typically involve either coupling of the electron spin to its orbital motion or to nuclear spins. Relaxation of confined electron spin has been previously measured only for Zeeman or exchange split spin states, where spin-orbit effects dominate relaxation, while spin flips due to nuclei have been observed in optical spectroscopy studies. Using an isolated GaAs double quantum dot defined by electrostatic gates and direct time domain measurements, we investigate in detail spin relaxation for arbitrary splitting of spin states. Results demonstrate that electron spin flips are dominated by nuclear interactions and are slowed by several orders of magnitude when a magnetic field of a few millitesla is applied. These results have significant implications for spin-based information processing

    Millisecond-range electron spin memory in singly-charged InP quantum dots

    Full text link
    We report millisecond-range spin memory of resident electrons in an ensemble of InP quantum dots (QDs) under a small magnetic field of 0.1 T applied along the optical excitation axis at temperatures up to about 5 K. A pump-probe photoluminescence (PL) technique is used for optical orientation of electron spins by the pump pulses and for study of spin relaxation over the long time scale by measuring the degree of circular polarization of the probe PL as a function of pump-probe delay. Dependence of spin decay rate on magnetic field and temperature suggests two-phonon processes as the dominant spin relaxation mechanism in this QDs at low temperatures.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let
    corecore