7 research outputs found

    Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During functional studies on the rat stress-inducible <it>Hspa1b </it>(<it>hsp70.1</it>) gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA), Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences.</p> <p>Results</p> <p>We found that a reporter gene driven by <it>Hspa1b </it>promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of <it>Hspa1b </it>promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous <it>Hspa1b </it>gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways.</p> <p>Conclusions</p> <p>Our observations suggest that i) some cationic liposomes may not be suitable for functional studies on <it>hsp </it>promoters, ii) lipofection may cause unintended changes in global gene expression in the transfected cells.</p

    Assembly of mitochondrial ubiquinol-cytochrome c oxidoreductase complex in yeast Saccharomyces cerevisiae: The role of Cbp3p and Cbp4p assembly factors: The role of Cbp3p and Cbp4p assembly factors

    Get PDF
    Ubiquinol-cytochrome c reductase (complex III) is a central component of the respiratory chain of the inner mitochondrial membrane. It transfers electrons from reduced ubiquinone to ferricytochrome c. Correctly assembled and functional complex III is an essential prerequisite for oxidative energy metabolism. Complex III deficiency has been reported to be associated with several neurodegenerative diseases. Formation and assembly of complex III requires a multitude of specific nuclearly encoded proteins. For example, gene specific translational activators for cytochrome b synthesis as well as three non-subunit proteins, which are important for assembly and/or stability have been detected. The role of Bcs1p in assembly of Rieske FeS protein and Qcr10p into complex III has been clasified recently. The role of the two putative chaperones, Cbp3p and Cbp4p, is not known. In spite of the similar phenotype of cbp3D and cbp4D strains, that suggests the role of both proteins in the same step of complex III assembly, we were able for the first time to demonstrate differences on the molecular level between both deletion mutants. We show by BN-PAGE that cbp3D and cbp4D mutants are disturbed in complex III assembly and accumulate intermediate-sized forms of the complex. Moreover deletion of CBP3 interferes with the formation of complex III/IV supracomplexes. Our studies show that Cbp3p and Cbp4p interact and are present in high molecular weight complexes, some of which might represent intermediates of complex III assembly. Overexpression of Cbp4p cannot substitute for the function of Cbp3p, but high level expression of Cbp3p can partially compensate for the lack of Cbp4p. Because lipids play an important role for complex III assembly and stability, we analysed the mitochondrial lipid composition of cbp3D and cbp4D mutants. Our data show that mitochondria of both mutants exhibit a wild type-like lipid composition, that favors the idea that Cbp3p and Cbp4p are specific assembly factors for complex III rather than components of the mitochondrial lipid metabolism. By complementation studies we have shown that Cbp3 proteins of S. cerevisiae, S. pombe and human are (partially) functional homologues. A yeast model based on chimeric constructs of S. cerevisiae and human proteins was constructed, which allows to test the pathogenicity of human mutations. To define the role/s of Cbp3p and Cbp4p in the assembly pathway of complex III, interactions of selected subunits with both assembly factors were analysed by TAP- or co-immunoprecipitation. Based on the results of Cbp3p and Cbp4p topologies, BN-PAGE analysis of null mutant strains and interaction studies a model for complex III assembly and the roles of Cbp3p and Cbp4p in this process are proposed. I present a hypothesis, according to which Cbp3p and Cbp4p form a ?scaffold? for the assembly of all three putative sub-complexes, may act independently in the first steps of bc1 complex assembly (e. g. the formation of sub-complexes) and interact together to assist the final assembly of sub-complexes into a mature enzyme.Der Ubiquinol-Cytochrom c Reductase (Komplex III) ist eine zentrale Komponente der Atmungskette der inneren Mitochondrienmembran. Er transferiert Elektronen von reduziertem Ubiquinon auf Ferricytochrom c. Der korrekt assemblierte und funktionale Komplex III ist eine essenzielle Voraussetzung für den oxidativen Energiemetabolismus. Komplex III Defizienz ist assoziiert mit verschiedenen neurodegenerativen Krankheiten..

    Biocompatible Graphene Oxide With Anchored Zwitterionic Moiety - Synthesis, Characterization And Application

    No full text
    Biocompatible Graphene Oxide with Anchored Zwitterionic Moiety - Synthesis, Characterization and Application Markéta Ilčíková1, Zuzana Kroneková2, Anna Záhoranová2 and Peter Kasák1* 1 Center for Advanced Materials, Qatar University, P.O.Box 2713 Doha, Qatar 2 Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia *Corresponding author: [email protected] The novel biocompatible graphene oxide (GO) bearing zwitterionic moiety was synthesized and characterized. The zwitterionic structures have recently gained attention in biomedical applications as materials for development of ultra-low fouling surfaces. Generally, zwitterions contain both negative and positive charge in their structures; however the overall charge is neutral. That impart them highly hydrophilic performance; the adsorbed water then prevent the cells or bacteria to interact with surface. Graphene is two dimensional filler interesting predominantly due to high electrical conductivity. In oxidized form the electrical conductivity is compromised due to presence of hydroxyl, epoxy and carboxyl functional groups. In this work, the hydroxyl groups were utilized for anchoring the zwitterionic moiety onto the GO surface. The reaction was performed in two steps. First the silanization with (3-mercaptopropyl)trimethoxysilane was preformed to introduce the thiol functionality onto the GO surface that was reacted with sulfobetaine monomer (3-((2-methacrylamidoethyl)dimethylammonio)propane-1-sulfonate) through thiolene click reaction in the following step. The successful modification was confirmed by FTIR and TGA. Compared to neat graphene, the presence of sulfobetaine improved the graphene biotolerability for fibroblasts and pancreatic beta cells. Modification of GO surface with zwitterionic moiety prevents its negative effect on cell viability. Thus the adsorption of cells on the surface and the cell - GO surface interaction is effected. The modified GO will be used for modification of electrode at biochips construction, and the electrorheological response will be discussed as well.Qscienc

    Exchange Counterion in Polycationic Hydrogels: Tunability of Hydrophobicity, Water State, and Floating Capability for a Floating pH Device

    No full text
    Smart gel materials are capable of controlling and switching swelling, water state, and wettability properties triggered by external stimuli. In this study, we fabricated a series of polyelectrolyte hydrogels bearing a 3-trimethylammoniumpropyl pendant to a methacrylamide-based backbone and examined the switchability with hydrophobic-like counteranions. The exchange between the initial chloride and camphor sulfate (CaS), dodecyl sulfate (DS), and perfluorooctanoate (PFO) counterions was investigated. The kinetics of the exchange showed that the fast exchange (within 4 h) of PFO allowed for a favorable coordination for ion pairing, resulting in a decrease in hydration. The reversibility of the exchange to the Cl− ion was only enabled for the CaS ion due to its bulkiness, while the PFO and DS hydrogels were unable to exchange, even by using tetrabutylammonium chloride, which is a structurally similar reagent, due to aggregation or the coagulates in the collapsed state of the linear tails of the counterions. The hydrogels exhibited a modulable water state and water swelling. Moreover, the hydrogels containing DS and PFO, as counterions, showed surface hydrophobic (contact angle 90°) and high hydrophobic (110°) behavior, respectively. The Raman spectrometry fluorescence with a pyrene probe indicated an increase in strong hydrogen-bonded water molecules, water confinement, and hydrophobic domains in the PFO hydrogel. Moreover, the PFO-modified hydrogel demonstrated a free-floating ability on the water surface, with a strong water repellency, showing that it has the potential to be applied in a floating pH detection device to distinguish between volatile and nonvolatile bases in a controlled manner

    Exchange counterion in polycationic hydrogels: Tunability of hydrophobicity, water state, and floating capability for a floating ph device

    No full text
    Smart gel materials are capable of controlling and switching swelling, water state, and wettability properties triggered by external stimuli. In this study, we fabricated a series of polyelectrolyte hydrogels bearing a 3-trimethylammoniumpropyl pendant to a methacrylamide-based backbone and examined the switchability with hydrophobic-like counteranions. The exchange between the initial chloride and camphor sulfate (CaS), dodecyl sulfate (DS), and perfluorooctanoate (PFO) counterions was investigated. The kinetics of the exchange showed that the fast exchange (within 4 h) of PFO allowed for a favorable coordination for ion pairing, resulting in a decrease in hydration. The reversibility of the exchange to the Cl− ion was only enabled for the CaS ion due to its bulkiness, while the PFO and DS hydrogels were unable to exchange, even by using tetrabutylammonium chloride, which is a structurally similar reagent, due to aggregation or the coagulates in the collapsed state of the linear tails of the counterions. The hydrogels exhibited a modulable water state and water swelling. Moreover, the hydrogels containing DS and PFO, as counterions, showed surface hydrophobic (contact angle 90°) and high hydrophobic (110°) behavior, respectively. The Raman spectrometry fluorescence with a pyrene probe indicated an increase in strong hydrogen-bonded water molecules, water confinement, and hydrophobic domains in the PFO hydrogel. Moreover, the PFO-modified hydrogel demonstrated a free-floating ability on the water surface, with a strong water repellency, showing that it has the potential to be applied in a floating pH detection device to distinguish between volatile and nonvolatile bases in a controlled manner.This publication was jointly supported by Qatar University and CI, Slovak Academy of Sciences Grant, IRCC-2020-004. This work was made possible by NPRP grant, # NPRP12S-0311-190299, from the Qatar National Research Fund (a member of The Qatar Foundation). The findings achieved herein are solely the work of the authors. The authors thank Grant Agency, VEGA, for the support provided through project nr. 2/0168/21. This study was performed during the implementation of the project, Building-up Centre for advanced materials application of the Slovak Academy of Sciences, ITMS project code 313021T081 supported by Research & Innovation Operational Programme funded by the ERDF.Scopu
    corecore