21 research outputs found
Library Cultures of Data Curation: Adventures in Astronomy
University libraries are partnering with disciplinary data producers to provide long-term digital curation of research datasets. Managing dataset producer expectations and guiding future development of library services requires understanding the decisions libraries make about curatorial activities, why they make these decisions, and the effects on future data reuse. We present a study, comprising interviews (n=43) and ethnographic observation, of two university libraries who partnered with the Sloan Digital Sky Survey (SDSS) collaboration to curate a significant astronomy dataset. The two libraries made different choices of the materials to curate and associated services, which resulted in different reuse possibilities. Each of the libraries offered partial solutions to the SDSS leaders’ objectives. The libraries’ approaches to curation diverged due to contextual factors, notably the extant infrastructure at their disposal (including technical infrastructure, staff expertise, values and internal culture, and organizational structure). The Data Transfer Process case offers lessons in understanding how libraries choose curation paths and how these choices influence possibilities for data reuse. Outcomes may not match data producers’ initial expectations but may create opportunities for reusing data in unexpected and beneficial ways
Globular cluster luminosity function as distance indicator
Globular clusters are among the first objects used to establish the distance
scale of the Universe. In the 1970-ies it has been recognized that the
differential magnitude distribution of old globular clusters is very similar in
different galaxies presenting a peak at M_V ~ -7.5. This peak magnitude of the
so-called Globular Cluster Luminosity Function has been then established as a
secondary distance indicator. The intrinsic accuracy of the method has been
estimated to be of the order of ~0.2 mag, competitive with other distance
determination methods. Lately the study of the Globular Cluster Systems has
been used more as a tool for galaxy formation and evolution, and less so for
distance determinations. Nevertheless, the collection of homogeneous and large
datasets with the ACS on board HST presented new insights on the usefulness of
the Globular Cluster Luminosity Function as distance indicator. I discuss here
recent results based on observational and theoretical studies, which show that
this distance indicator depends on complex physics of the cluster formation and
dynamical evolution, and thus can have dependencies on Hubble type, environment
and dynamical history of the host galaxy. While the corrections are often
relatively small, they can amount to important systematic differences that make
the Globular Cluster Luminosity Function a less accurate distance indicator
with respect to some other standard candles.Comment: Accepted for publication in Astrophysics and Space Science. Review
paper based on the invited talk at the conference "The Fundamental Cosmic
Distance Scale: State of the Art and Gaia Perspective", Naples, May 2011. (13
pages, 8 figures
The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources
A deep Westerbork survey of areas with multicolor Mayall 4 M plates. II - Optical identifications
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
A deep Westerbork survey of areas with multicolor Mayall 4 M plates. III - Photometry and spectroscopy of faint source identifications
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
Colors of radio galaxies at high redshifts
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe