6 research outputs found

    Sr-Nd isotope systematics in 14-28 Ma low-temperature altered mid-ocean ridge basalt from the Australian Antarctic Discordance, Ocean Drilling Program Leg 187

    Get PDF
    [1] The effects of low-temperature alteration on the Rb-Sr and Sm-Nd isotope systems were investigated in 14–28 Ma mid-ocean ridge basalts recovered during Ocean Drilling Program (ODP) Leg 187 from the Australian Antarctic Discordance through comparison of pristine glass and associated variably altered basalts. Both Nd and Sm are immobile during low-temperature alteration, and 143Nd/144Nd displays mantle values even in heavily altered samples. In contrast, 87Sr/86Sr and Rb concentrations increase during seawater-rock interaction, which is especially apparent in single samples with macroscopically zoned alteration domains. The increase in 87Sr/86Sr roughly correlates with the visible degree of alteration, indicating a higher seawater/rock ratio in the more altered samples. Sr concentrations, however, do not systematically increase with increasing degree of alteration, most likely reflecting exchange of Sr in smectite interlayer sites. The degree of alteration in the uppermost oceanic crust of the Australian Antarctic Discordance is independent of crustal age. A comparison with literature data for young and old altered oceanic crust suggests that most low-temperature alteration occurs within a few million years after formation of the oceanic crust, probably reflecting greater fluid flux through the crust during its early history as a result of higher permeability and increased fluid circulation near the ridge

    Boron isotope geochemistry and U-Pb systematics of altered MORB from the Australian Antarctic Disordance (ODP Leg 187)

    No full text
    Boron and Pb isotopic compositions together with B–U–Th–Pb concentrations were determined for Pacific and Indian mantle-type mid-ocean ridge basalts (MORB) obtained from shallow drill holes near the Australian Antarctic Discordance (AAD). Boron contents in the altered samples range from 29.7 to 69.6 ppm and are extremely enriched relative to fresh MORB glass with 0.4–0.6 ppm B. Similarly the δ11B values range from 5.5‰ to 15.9‰ in the altered basalts and require interaction with a δ11B enriched fluid similar to seawater ∼ 39.5‰ and/or boron isotope fractionation during the formation of secondary clays. Positive correlations between B concentrations and other chemical indices of alteration such as H2O CO2, K2O, P2O5, U and 87Sr/86Sr indicate that B is progressively enriched in the basalts as they become more altered. Interestingly, δ11B shows the largest isotopic shift to + 16‰ in the least altered basalts, followed by a continual decrease to + 5–6‰ in the most altered basalts. These observations may indicate a change from an early seawater dominated fluid towards a sediment-dominated fluid as a result of an increase in sediment cover with increasing age of the seafloor. The progression from heavy δ11B towards lighter values with increasing degrees of alteration may also reflect increased formation of clay minerals (e.g., saponite). A comparison of 238U/204Pb and 206Pb/204Pb in fresh glass and variably altered basalt from Site 1160B shows extreme variations that are caused by secondary U enrichment during low temperature alteration. Modeling of the U–Pb isotope system confirms that some alteration events occurred early in the 21.5 m.y. history of these rocks, even though a significant second pulse of alteration happened at ∼ 12 Ma after formation of the crust. The U–Pb systematics of co-genetic basaltic glass and variably low temperature altered basaltic whole rocks are thus a potential tool to place age constraints on the timing of alteration and fluid flow in the ocean crust

    Chemical and isotopic compositions of altered MORB from ODP Holes 187-1154A, 187-1155B, and 187-1160B

    No full text
    Boron and Pb isotopic compositions together with B-U-Th-Pb concentrations were determined for Pacific and Indian mantle-type mid-ocean ridge basalts (MORB) obtained from shallow drill holes near the Australian Antarctic Discordance (AAD). Boron contents in the altered samples range from 29.7 to 69.6 ppm and are extremely enriched relative to fresh MORB glass with 0.4-0.6 ppm B. Similarly the d11B values range from 5.5‰ to 15.9‰ in the altered basalts and require interaction with a d11B enriched fluid similar to seawater ~39.5‰ and/or boron isotope fractionation during the formation of secondary clays. Positive correlations between B concentrations and other chemical indices of alteration such as H2O CO2, K2O, P2O5, U and 87Sr/86Sr indicate that B is progressively enriched in the basalts as they become more altered. Interestingly, d11B shows the largest isotopic shift to +16‰ in the least altered basalts, followed by a continual decrease to +5-6‰ in the most altered basalts. These observations may indicate a change from an early seawater dominated fluid towards a sediment-dominated fluid as a result of an increase in sediment cover with increasing age of the seafloor. The progression from heavy d11B towards lighter values with increasing degrees of alteration may also reflect increased formation of clay minerals (e.g., saponite). A comparison of 238U/204Pb and 206Pb/204Pb in fresh glass and variably altered basalt from Site 1160B shows extreme variations that are caused by secondary U enrichment during low temperature alteration. Modeling of the U-Pb isotope system confirms that some alteration events occurred early in the 21.5 Ma history of these rocks, even though a significant second pulse of alteration happened at ~12 Ma after formation of the crust. The U-Pb systematics of co-genetic basaltic glass and variably low temperature altered basaltic whole rocks are thus a potential tool to place age constraints on the timing of alteration and fluid flow in the ocean crust
    corecore