14 research outputs found

    Development of robust targeted proteomics assays for cerebrospinal fluid biomarkers in multiple sclerosis

    Get PDF
    Background: Verification of cerebrospinal fluid (CSF) biomarkers for multiple sclerosis and other neurological diseases is a major challenge due to a large number of candidates, limited sample material availability, disease and biological heterogeneity, and the lack of standardized assays. Furthermore, verification studies are often based on a low number of proteins from a single discovery experiment in medium-sized cohorts, where antibodies and surrogate peptides may differ, thus only providing an indication of proteins affected by the disease and not revealing the bigger picture or concluding on the validity of the markers. We here present a standard approach for locating promising biomarker candidates based on existing knowledge, resulting in high-quality assays covering the main biological processes affected by multiple sclerosis for comparable measurements over time. Methods: Biomarker candidates were located in CSF-PR (proteomics.uib.no/csf-pr), and further filtered based on estimated concentration in CSF and biological function. Peptide surrogates for internal standards were selected according to relevant criteria, parallel reaction monitoring (PRM) assays created, and extensive assay quality testing performed, i.e. intra- and inter-day variation, trypsin digestion status over time, and whether the peptides were able to separate multiple sclerosis patients and controls. Results: Assays were developed for 25 proteins, represented by 72 peptides selected according to relevant guidelines and available literature and tested for assay peptide suitability. Stability testing revealed 64 peptides with low intra- and inter-day variations, with 44 also being stably digested after 16 h of trypsin digestion, and 37 furthermore showing a significant difference between multiple sclerosis and controls, thereby confirming literature findings. Calibration curves and the linear area of measurement have, so far, been determined for 17 of these peptides. Conclusions: We present 37 high-quality PRM assays across 21 CSF-proteins found to be affected by multiple sclerosis, along with a recommended workflow for future development of new assays. The assays can directly be used by others, thus enabling better comparison between studies. Finally, the assays can robustly and stably monitor biological processes in multiple sclerosis patients over time, thus potentially aiding in diagnosis and prognosis, and ultimately in treatment decisions.publishedVersio

    In-depth cerebrospinal fluid quantitative proteome and deglycoproteome analysis: presenting a comprehensive picture of pathways and processes affected by multiple sclerosis

    Get PDF
    In the current study, we conducted a quantitative in-depth proteome and deglycoproteome analysis of cerebrospinal fluid (CSF) from relapsing-remitting multiple sclerosis (RRMS) and neurological controls using mass spectrometry and pathway analysis. More than 2000 proteins and 1700 deglycopeptides were quantified, with 484 proteins and 180 deglycopeptides significantly changed between pools of RRMS and pools of controls. Approximately 300 of the significantly changed proteins were assigned to various biological processes including inflammation, extracellular matrix organization, cell adhesion, immune response, and neuron development. Ninety-six significantly changed deglycopeptides mapped to proteins that were not found changed in the global protein study. In addition, four mapped to the proteins oligo-myelin glycoprotein and noelin, which were found oppositely changed in the global study. Both are ligands to the nogo receptor, and the glycosylation of these proteins appears to be affected by RRMS. Our study gives the most extensive overview of the RRMS affected processes observed from the CSF proteome to date, and the list of differential proteins will have great value for selection of biomarker candidates for further verification.acceptedVersio

    Effects of blood contamination and the rostro-caudal gradient on the human cerebrospinal fluid proteome

    Get PDF
    Over the last years there has been an increased focus on the importance of knowing the effect of pre-analytical influence on the proteomes under study, particularly in the field of biomarker discovery. We present three proteomics studies examining the effect of blood contamination and the rostro-caudal gradient (RCG) on the cerebrospinal fluid (CSF) proteome, in addition to plasma/CSF protein ratios. The studies showed that the central nervous system (CNS) derived proteins appeared to be unaffected by the RCG, while the plasma-derived proteins showed an increase in concentration towards the lumbar area. This implies that the concentration of the plasma-derived proteins in CSF will vary depending on the volume of CSF that is collected. In the CSF samples spiked with blood, 262 of 814 quantified proteins showed an abundance increase of more than 1.5 fold, while 403 proteins had a fold change of less than 1.2 and appeared to be unaffected by blood contamination. Proteins with a high plasma/CSF ratio appeared to give the largest effect on the CSF proteome upon blood contamination. The results give important background information on how factors like blood contamination, RCG and blood-CNS-barrier influences the CSF proteome. This information is particularly important in the field of biomarker discovery, but also for routine clinical measurements. The data from the blood contamination and RCG discovery studies have been deposited to the ProteomeXchange with identifier PXD000401

    Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients

    Get PDF
    Background: There is little knowledge concerning the content and the mechanisms of filling of arachnoid cysts. The aim of this study was to compare the protein content of arachnoid cysts and cerebrospinal fluid by quantitative proteomics to increase the understanding of arachnoid cysts. Methods: Arachnoid cyst fluid and cerebrospinal fluid from five patients were analyzed by quantitative proteomics in two separate experiments. In a label-free experiment arachnoid cyst fluid and cerebrospinal fluid samples from individual patients were trypsin digested and analyzed by Orbitrap mass spectrometry in a label-free manner followed by data analysis using the Progenesis software. In the second proteomics experiment, a patient sample pooling strategy was followed by MARS-14 immunodepletion of high abundant proteins, trypsin digestion, iTRAQ labelling, and peptide separation by mix-phase chromatography followed by Orbitrap mass spectrometry analysis. The results from these analyzes were compared to previously published mRNA microarray data obtained from arachnoid membranes. Results: We quantified 348 proteins by the label-free individual patient approach and 1425 proteins in the iTRAQ experiment using a pool from five patients of arachnoid cyst fluid and cerebrospinal fluid. This is by far the largest number of arachnoid cyst fluid proteins ever identified, and the first large-scale quantitative comparison between the protein content of arachnoid cyst fluid and cerebrospinal fluid from the same patients at the same time. Consistently in both experiment, we found 22 proteins with significantly increased abundance in arachnoid cysts compared to cerebrospinal fluid and 24 proteins with significantly decreased abundance. We did not observe any molecular weight gradient over the arachnoid cyst membrane. Of the 46 proteins we identified as differentially abundant in our study, 45 were also detected from the mRNA expression level study. None of them were previously reported as differentially expressed. We did not quantify any of the proteins corresponding to gene products from the ten genes previously reported as differentially abundant between arachnoid cysts and control arachnoid membranes. Conclusions: From our experiments, the protein content of arachnoid cyst fluid and cerebrospinal fluid appears to be similar. There were, however, proteins that were significantly differentially abundant between arachnoid cyst fluid and cerebrospinal fluid. This could reflect the possibility that these proteins are affected by the filling mechanism of arachnoid cysts or are shed from the membranes into arachnoid cyst fluid. Our results do not support the proposed filling mechanisms of oncotic pressure or valves

    Development of robust targeted proteomics assays for cerebrospinal fluid biomarkers in multiple sclerosis

    No full text
    Background: Verification of cerebrospinal fluid (CSF) biomarkers for multiple sclerosis and other neurological diseases is a major challenge due to a large number of candidates, limited sample material availability, disease and biological heterogeneity, and the lack of standardized assays. Furthermore, verification studies are often based on a low number of proteins from a single discovery experiment in medium-sized cohorts, where antibodies and surrogate peptides may differ, thus only providing an indication of proteins affected by the disease and not revealing the bigger picture or concluding on the validity of the markers. We here present a standard approach for locating promising biomarker candidates based on existing knowledge, resulting in high-quality assays covering the main biological processes affected by multiple sclerosis for comparable measurements over time. Methods: Biomarker candidates were located in CSF-PR (proteomics.uib.no/csf-pr), and further filtered based on estimated concentration in CSF and biological function. Peptide surrogates for internal standards were selected according to relevant criteria, parallel reaction monitoring (PRM) assays created, and extensive assay quality testing performed, i.e. intra- and inter-day variation, trypsin digestion status over time, and whether the peptides were able to separate multiple sclerosis patients and controls. Results: Assays were developed for 25 proteins, represented by 72 peptides selected according to relevant guidelines and available literature and tested for assay peptide suitability. Stability testing revealed 64 peptides with low intra- and inter-day variations, with 44 also being stably digested after 16 h of trypsin digestion, and 37 furthermore showing a significant difference between multiple sclerosis and controls, thereby confirming literature findings. Calibration curves and the linear area of measurement have, so far, been determined for 17 of these peptides. Conclusions: We present 37 high-quality PRM assays across 21 CSF-proteins found to be affected by multiple sclerosis, along with a recommended workflow for future development of new assays. The assays can directly be used by others, thus enabling better comparison between studies. Finally, the assays can robustly and stably monitor biological processes in multiple sclerosis patients over time, thus potentially aiding in diagnosis and prognosis, and ultimately in treatment decisions

    Flow chart of the rostro-caudal gradient study.

    No full text
    <p>In the rostro-caudal gradient (RCG) study, we examined the seven following points of the RCG from a PSP patient: 1-2<sup>nd</sup>, 10-11<sup>th</sup>, 16-17<sup>th</sup>, 24-25<sup>th</sup>, 31-32<sup>nd</sup>, 38-39<sup>th</sup> and 44-45<sup>th</sup> mL CSF, referred to as RCG point 1-7, respectively. Twelve samples were digested and iTRAQ labeled (114-117). A reference, (labeled with iTRAQ reagent 114) containing the same amount of each RCG point, was included in each experiment. The RCG points 1 and 7 were included twice. After digestion and iTRAQ-labeling, samples were combined as follows: Exp. 1 (reference, 44-45<sup>th</sup> mL, 24-25<sup>th</sup> mL and 1-2<sup>nd</sup> mL), Exp. 2 (reference, 1-2<sup>nd</sup> mL, 38-39<sup>th</sup> mL and 16-17<sup>th</sup> mL), and Exp. 3 (reference, 10-11<sup>th</sup> mL, 44-45<sup>th</sup> mL and the 31-32<sup>nd</sup> mL). The three experiments were fractionated by mixed mode reversed phase-anion chromatography (MM (RP-AX)) and analyzed on an Orbitrap Velos Pro. The protein abundances were averaged for each protein in the duplicate samples.</p

    Categorization of proteins based on fold change, R-squared values and major expected contributing source of origin.

    No full text
    <p>In order to explore how different proteins were affected by the rostro-caudal gradient, we used the fold change and R-squared values of the proteins quantified with SID-MRM and iTRAQ to categorize the proteins into the three categories: affected by the RCG, unaffected by the RCG and uncertain. The fold change was calculated between the 1-2<sup>nd</sup> and 44-45<sup>th</sup> mL of CSF (referred to as RCG point 1 and 7), and the classification was based on the criteria from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0090429#pone-0090429-t001" target="_blank">Table 1</a>.The proteins are also categorized into groups based on the major expected contributing source of origin, with Uniprot as the primary reference unless otherwise stated. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0090429#pone.0090429.s006" target="_blank">Table S5</a> for details. The asterisk (*) marks conflicting results: affected + unaffected  =  uncertain; affected + uncertain  =  affected; unaffected + uncertain  =  unaffected. Proteins only quantified in the SID-MRM study is marked with <sup>a</sup>.</p

    Overview of the conducted studies.

    No full text
    <p>Blood contamination: in experiment A protein depleted CSF was separated by SDS-PAGE, in experiment B crude CSF was in-solution digested. Progenesis LC-MS was used for data analysis. In the rostro-caudal gradient study, we used iTRAQ-labeling with mixed mode reversed phase-anion chromatography (MM (RP-AX)) fractionation. The Spectrum Mill software was used for data analysis. For verification we used stable isotope dilution (SID) multiple reaction monitoring (MRM) to monitor 70 peptides. MM (RP-AX) chromatography was used for fractionation and the MultiQuant software was used for data analysis. In the plasma/CSF ratio study equal amount of corresponding CSF and plasma from five patients were compared using dimethyl labeling. Samples were fractionated using strong cation exchange (SCX) chromatography. Proteome discoverer was used for data analysis. For all discovery experiments the samples were analyzed on an Orbitrap Velos Pro and for SID-MRM the samples were analyzed on a Q-trap 5500. SIS = Stable Isotope Standards</p

    Flow chart of the plasma/CSF study.

    No full text
    <p>We compared the cerebrospinal fluid (CSF) and plasma protein ratio of five patients (P1-P5) using dimethyl labeling. The reference sample was a mix of equal total amount of CSF and plasma, and was labeled by light reagents. The five CSF samples were labeled by intermediate (IM) reagents, and the plasma samples were labeled by the heavy reagents. The light, IM and heavy labeled samples were combined and fractionated into eight fractions by strong cation exchange chromatography and analyzed on an Orbitrap Velos Pro. The average (and standard deviation) protein concentration of CSF and plasma, age at sampling and ratio male/female of the five patients are presented in the figure.</p

    Protein concentration measurement of along the rostro-caudal gradient.

    No full text
    <p>Protein concentration of the cerebrospinal fluid (CSF)-derived proteins from the seven points along the rostro-caudal gradient (RCG). The CSF was measured in triplicates with Qubit, and error bars of the standard deviation are included. R squared value 0.8931.</p
    corecore