5,237 research outputs found

    Method developments and assessments of animal welfare in IVC-systems

    Get PDF

    Formation of Ejecta and Dust Pond Deposits on Asteroid Vesta

    Get PDF
    Dust and melt ponds have been studied on planetary bodies including Eros, Itokawa, and the Moon. However, depending on the nature of the regolith material properties and the location of the planetary body, the formation mechanism of the ponded features varies. On Eros and Itokawa, ponded features are formed from dry regolith materials whereas on the Moon similar features are thought to be produced by ejecta melt. On the surface of Vesta, we have identified type 1, ejecta ponds, and type 2, dust ponds. On Vesta type 1 pond are located in the vicinity of ejecta melt of large impact craters. The material is uniformly distributed across the crater floor producing smooth pond surfaces which have a constant slope and shallow depth. The hosting crater of melt-like ponds has a low raised rim and is located on relatively low elevated regions. Whereas, the type 2 ponds on Vesta reveal an undulating surface that is frequently displaced from the crater center or extends toward the crater wall with an abruptly changing slope. We suggested that for the production of the type 2 ponds, localized seismic diffusion and volatile-induced fluidization may be responsible for Vesta. Due to Vesta's large size (in comparison to Eros and Itokawa), the surface may have experienced local-scale rare high-amplitude seismic diffusion which was sufficient to drift fine material. Similarly, short-lived volatile activities were capable to transfer dusty material on to the surface. Segregation and smoothing of transferred material lack further surface activities, hindering the formation of smooth morphology

    Pair production of the T-odd leptons at the LHC

    Full text link
    The T-odd leptons predicted by the littlest HiggsHiggs model with T-parity can be pair produced via the subprocesses ggH+Hgg\to \ell^{+}_{H}\ell^{-}_{H}, qqˉH+Hq\bar{q}\to \ell^{+}_{H}\ell^{-}_{H}, γγH+H\gamma\gamma\to \ell^{+}_{H}\ell^{-}_{H} and VVH+H VV \to \ell^{+}_{H}\ell^{-}_{H} (VV=WW or ZZ) at the CERNCERN Large Hadron Collider (LHC)(LHC). We estimate the hadronic production cross sections for all of these processes and give a simply phenomenology analysis. We find that the cross sections for most of the above processes are very small. However, the value of the cross section for the DrellYanDrell-Yan process qqˉH+Hq\bar{q}\to \ell^{+}_{H}\ell^{-}_{H} can reach 270fb270fb.Comment: 12 pages, 2 figure

    Identifying Boosted Objects with N-subjettiness

    Get PDF
    We introduce a new jet shape -- N-subjettiness -- designed to identify boosted hadronically-decaying objects like electroweak bosons and top quarks. Combined with a jet invariant mass cut, N-subjettiness is an effective discriminating variable for tagging boosted objects and rejecting the background of QCD jets with large invariant mass. In efficiency studies of boosted W bosons and top quarks, we find tagging efficiencies of 30% are achievable with fake rates of 1%. We also consider the discovery potential for new heavy resonances that decay to pairs of boosted objects, and find significant improvements are possible using N-subjettiness. In this way, N-subjettiness combines the advantages of jet shapes with the discriminating power seen in previous jet substructure algorithms.Comment: 26 pages, 26 figures, 2 tables; v2: references added; v3: discussion of results extende

    SUSY Stops at a Bump

    Full text link
    We discuss collider signatures of the "natural supersymmetry" scenario with baryon-number violating R-parity violation. We argue that this is one of the few remaining viable incarnations of weak scale supersymmetry consistent with full electroweak naturalness. We show that this intriguing and challenging scenario contains distinctive LHC signals, resonances of hard jets in conjunction with relatively soft leptons and missing energy, which are easily overlooked by existing LHC searches. We propose novel strategies for distinguishing these signals above background, and estimate their potential reach at the 8 TeV LHC. We show that other multi-lepton signals of this scenario can be seen by currently existing searches with increased statistics, but these opportunities are more spectrum-dependent.Comment: 23 pages, 7 figures, 3 tables. V2: spectrum discussion corrected, most of the changes are in Sec. 2. Benchmarks, analysis and conclusions unchanged. References adde

    Heavy Squarks at the LHC

    Full text link
    The LHC, with its seven-fold increase in energy over the Tevatron, is capable of probing regions of SUSY parameter space exhibiting qualitatively new collider phenomenology. Here we investigate one such region in which first generation squarks are very heavy compared to the other superpartners. We find that the production of these squarks, which is dominantly associative, only becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However, discovery of this scenario is complicated because heavy squarks decay primarily into a jet and boosted gluino, yielding a dijet-like topology with missing energy (MET) pointing along the direction of the second hardest jet. The result is that many signal events are removed by standard jet/MET anti-alignment cuts designed to guard against jet mismeasurement errors. We suggest replacing these anti-alignment cuts with a measurement of jet substructure that can significantly extend the reach of this channel while still removing much of the background. We study a selection of benchmark points in detail, demonstrating that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC with L~10(100)fb-1
    corecore