1,577 research outputs found

    Generation and Characterization of iPS Cells Derived from APECED Patients for Gene Correction

    Get PDF
    APECED (Autoimmune-Polyendocrinopathy-Candidiasis-Ectodermal-Dystrophy) is a severe and incurable multiorgan autoimmune disease caused by mutations in the AIRE (autoimmune regulator) gene. Without functional AIRE, the development of central and peripheral immune tolerance is severely impaired allowing the accumulation of autoreactive immune cells in the periphery. This leads to multiple endocrine and non-endocrine autoimmune disorders and mucocutaneous candidiasis in APECED patients. Recent studies have suggested that AIRE also has novel functions in stem cells and contributes to the regulatory network of pluripotency. In preparation of therapeutic gene correction, we generated and assessed patient blood cell-derived iPSCs, potentially suitable for cell therapy in APECED. Here, we describe APECED-patient derived iPSCs's properties, expression of AIRE as well as classical stem cell markers by qPCR and immunocytochemistry. We further generated self-aggregated EBs of the iPSCs. We show that APECED patient-derived iPSCs and EBs do not have any major proliferative or apoptotic defects and that they express all the classical pluripotency markers similarly to healthy person iPSCs. The results suggest that the common AIRE R257X truncation mutation does not affect stem cell properties and that APECED iPSCs can be propagated in vitro and used for subsequent gene-correction. This first study on APECED patient-derived iPSCs validates their pluripotency and confirms their ability for differentiation and potential therapeutic use.Peer reviewe

    Response to comment on 'AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies'

    Get PDF
    In 2016, we reported four substantial observations of APECED/APS1 patients, who are deficient in AIRE, a major regulator of central T cell tolerance (Meyer et al., 2016). Two of those observations have been challenged. Specifically, 'private' autoantibody reactivities shared by only a few patients but collectively targeting >1000 autoantigens have been attributed to false positives (Landegren, 2019). While acknowledging this risk, our study-design included follow-up validation, permitting us to adopt statistical approaches to also limit false negatives. Importantly, many such private specificities have now been validated by multiple, independent means including the autoantibodies ' molecular cloning and expression. Second, a significant correlation of antibody-mediated IFN a neutralization with an absence of disease in patients highly disposed to Type I diabetes has been challenged because of a claimed failure to replicate our findings (Landegren, 2019). However, flaws in design and implementation invalidate this challenge. Thus, our results present robust, insightful, independently validated depictions of APECED/APS1, that have spawned productive follow-up studies.Non peer reviewe

    Serotonin and tryptophan metabolites, autoantibodies and gut microbiome in APECED

    Get PDF
    Objective: Intestinal autoimmunity with gastrointestinal (GI) dysfunction has been shown in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Patients lack entero-endocrine (EE) cells and have circulating autoantibodies (Aabs) against critical enzymes in serotonin (5-HT) biosynthesis. Design: We sought to determine the serum levels of 5-HT, tryptophan (Trp) metabolites and L-DOPA in 37 Finnish APECED patients and to correlate their abundance with the presence of TPH and AADC Aabs, GI dysfunction and depressive symptoms. We also performed an exploratory analysis of the gut microbiome. Methods: Serum 5-HT, L-DOPA and Trp metabolite levels were determined by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). TPH and AADC Aabs were measured by ELISA. Depression was assessed with a structured RBDI questionnaire. The V3-V4 regions of the bacterial 16S rRNA gene were sequenced for gut microbiome exploration. Results: Serum 5-HT levels were significantly decreased (130 +/- 131 nmol/L vs 686 +/- 233 nmol/L, P <0.0001) in APECED patients with TPH-1 (+/- AADC) Aabs compared to controls and patients with only AADC Aabs. Reduced 5-HT levels correlated with constipation. The genus Escherichia/Shigella was overrepresented in the intestinal microbiome. No correlation between serum Trp, 5-HT or L-DOPA levels and the RBDI total score, fatigue or sleep disorders was found. Conclusions: This exploratory study found low serum levels of 5-HT to be associated with constipation and the presence of TPH-1 and AADC Aabs, but not with symptoms of depression. Hence, serum 5-HT, TPH1 and AADC Aabs should be determined in APECED patients presenting with GI symptoms.Peer reviewe

    Mapping of Human Autoantibody Binding Sites on the Calcium-Sensing Receptor

    Get PDF
    Previously, we have demonstrated the presence of anti-calcium-sensing receptor (CaSR) antibodies in patients with autoimmune polyglandular syndrome type 1 (APS1), a disease that is characterized in part by hypoparathyroidism involving hypocalcemia, hyperphosphatemia, and low serum levels of parathyroid hormone. The aim of this study was to define the binding domains on the CaSR of anti-CaSR antibodies found in APS1 patients and in one patient suspected of having autoimmune hypocalciuric hypercalcemia (AHH). A phage-display library of CaSR peptides was constructed and used in biopanning experiments with patient sera. Selectively enriched IgG-binding peptides were identified by DNA sequencing, and subsequently, immunoreactivity to these peptides was confirmed in ELISA. Anti-CaSR antibody binding sites were mapped to amino acid residues 41–69, 114–126, and 171–195 at the N-terminal of the extracellular domain of the receptor. The major autoepitope was localized in the 41–69 amino acid sequence of the CaSR with antibody reactivity demonstrated in 12 of 12 (100%) APS1 patients with anti-CaSR antibodies and in 1 AHH patient with anti-CaSR antibodies. Minor epitopes were located in the 114–126 and 171–195 amino acid domains, with antibody reactivity shown in 5 of 12 (42%) and 4 of 12 (33%) APS1 patients, respectively. The results indicate that epitopes for anti-CaSR antibodies in the AHH patient and in the APS1 patients who were studied are localized in the N-terminal of the extracellular domain of the receptor. The present work has demonstrated the successful use of phage-display technology in the discovery of CaSR-specific epitopes targeted by human anti-CaSR antibodies. © 2010 American Society for Bone and Mineral Research

    Autoantibody Repertoire in APECED Patients Targets Two Distinct Subgroups of Protiens

    Get PDF
    High titer autoantibodies produced by B lymphocytes are clinically important features of many common autoimmune diseases. APECED patients with deficient autoimmune regulator (AIRE) gene collectively display a broad repertoire of high titer autoantibodies, including some which are pathognomonic for major autoimmune diseases. AIRE deficiency severely reduces thymic expression of gene-products ordinarily restricted to discrete peripheral tissues, and developing T cells reactive to those gene-products are not inactivated during their development. However, the extent of the autoantibody repertoire in APECED and its relation to thymic expression of self-antigens are unclear. We here undertook a broad protein array approach to assess autoantibody repertoire in APECED patients. Our results show that in addition to shared autoantigen reactivities, APECED patients display high inter-individual variation in their autoantigen profiles, which collectively are enriched in evolutionarily conserved, cytosolic and nuclear phosphoproteins. The APECED autoantigens have two major origins; proteins expressed in thymic medullary epithelial cells and proteins expressed in lymphoid cells. These findings support the hypothesis that specific protein properties strongly contribute to the etiology of B cell autoimmunity.Peer reviewe

    Fracture geometry and statistics of Ceres’ floor fractures

    Get PDF
    Floor-fractured craters are one of the most distinct features on Ceres. Most of the fractures are located on the crater floors. The floor-fractures are concentric, radial or polygonal and share similarities with the floor-fractured craters (FCC) of Class 1 and 4 on the Moon (e.g., Buczkowski et al., 2018; Schultz, 1976) In total we measured 2336 fractures in thirteen craters. We analyzed their width, length, orientation and density. Floor-fractures on Ceres do not show a global uniform sense of orientation. Nevertheless, two or more preferred orientations can be found in nearly every crater. The density map illustrates that there is typically no decrease of fracturing from the crater center to the crater rim and denotes formation mechanisms that are not necessarily impact driven. Because of the variation in these parameters, it is more likely that FFC on Ceres are globally independent and show different formation mechanisms. The geometry of the floor-fractures suggests an inhomogeneous, brittle surface material, in some cases with volatile components. We also propose that the formation mechanisms on Ceres are comparable to those on the Moon and Mars and such mechanisms include cooling/melting processes, degassing, and subsidence of the crater floor by up-doming of subsurface material as a result of absolute tensile stresses

    Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines

    Get PDF
    Chronic mucocutaneous candidiasis (CMC) is frequently associated with T cell immunodeficiencies. Specifically, the proinflammatory IL-17A–producing Th17 subset is implicated in protection against fungi at epithelial surfaces. In autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED, or autoimmune polyendocrine syndrome 1), CMC is often the first sign, but the underlying immunodeficiency is a long-standing puzzle. In contrast, the subsequent endocrine features are clearly autoimmune, resulting from defects in thymic self-tolerance induction caused by mutations in the autoimmune regulator (AIRE). We report severely reduced IL-17F and IL-22 responses to both Candida albicans antigens and polyclonal stimulation in APECED patients with CMC. Surprisingly, these reductions are strongly associated with neutralizing autoantibodies to IL-17F and IL-22, whereas responses were normal and autoantibodies infrequent in APECED patients without CMC. Our multicenter survey revealed neutralizing autoantibodies against IL-17A (41%), IL-17F (75%), and/ or IL-22 (91%) in >150 APECED patients, especially those with CMC. We independently found autoantibodies against these Th17-produced cytokines in rare thymoma patients with CMC. The autoantibodies preceded the CMC in all informative cases. We conclude that IL-22 and IL-17F are key natural defenders against CMC and that the immunodeficiency underlying CMC in both patient groups has an autoimmune basis
    • …
    corecore