37 research outputs found

    Expression of HDACs 1, 3 and 8 Is upregulated in the presence of Infiltrating lymphocytes in uveal melanoma

    Get PDF
    Simple Summary Uveal melanoma (UM) is an ocular malignancy which is derived from melanocytes in the uveal tract. Epigenetic regulators such as Histone Deacetylase (HDACs) inhibitors are being tested as treatment of UM metastases. Expression of different HDACs is variable, and some are increased in high-risk tumors with loss of one chromosome 3. As this genetic abnormality is also associated with an inflammatory phenotype, we analyzed whether HDAC expression was influenced by inflammation. In two cohorts of UM cases, expression of several HDACs showed a positive correlation with tumor-infiltrating T cells, while HDACs 2 and 11 showed a negative association with macrophages. Interferon-gamma stimulated expression of some HDACs on UM cell lines. These data suggest that cytokines produced by T cells may be responsible for the increased expression of some HDACs in UM with monosomy 3. In Uveal Melanoma (UM), an inflammatory phenotype is strongly associated with the development of metastases and with chromosome 3/BAP1 expression loss. As an increased expression of several Histone Deacetylases (HDACs) was associated with loss of chromosome 3, this suggested that HDAC expression might also be related to inflammation. We analyzed HDAC expression and the presence of leukocytes by mRNA expression in two sets of UM (Leiden and TCGA) and determined the T lymphocyte fraction through ddPCR. Four UM cell lines were treated with IFN gamma (50IU, 200IU). Quantitative PCR (qPCR) was used for mRNA measurement of HDACs in cultured cells. In both cohorts (Leiden and TCGA), a positive correlation occurred between expression of HDACs 1, 3 and 8 and the presence of a T-cell infiltrate, while expression of HDACs 2 and 11 was negatively correlated with the presence of tumor-infiltrating macrophages. Stimulation of UM cell lines with IFN gamma induced an increase in HDACs 1, 4, 5, 7 and 8 in two out of four UM cell lines. We conclude that the observed positive correlations between HDAC expression and chromosome 3/BAP1 loss may be related to the presence of infiltrating T cells.Cancer Signaling networks and Molecular Therapeutic

    MiRNAs correlate with HLA expression in uveal melanoma: both up- and downregulation are related to monosomy 3

    Get PDF
    Simple Summary Uveal melanoma (UM) is a rare ocular malignancy that often gives rise to metastases. Tumours with an inflammatory phenotype have an especially bad prognosis. As an increased HLA expression and the presence of tumour-infiltrating lymphocytes and macrophages may be regulated by miRNAs, we set out to investigate whether any miRNAs are associated with inflammatory parameters in this malignancy. Some miRNAs were increased in UM with a high HLA expression and high T cell numbers, while others were decreased, showing two opposing patterns; however, both patterns were related to the tumour's chromosome 3/BAP1 status. We conclude that specific miRNAs are related to the inflammatory phenotype and that these are differentially expressed between disomy 3/BAP1-positive versus monosomy 3/BAP1-negative UM. MicroRNAs are known to play a role in the regulation of inflammation. As a high HLA Class I expression is associated with a bad prognosis in UM, we set out to determine whether any miRNAs were related to a high HLA Class I expression and inflammation. We also determined whether such miRNAs were related to the UM's genetic status. The expression of 125 miRNAs was determined in 64 primary UM from Leiden. Similarly, the mRNA expression of HLA-A, HLA-B, TAP1, BAP1, and immune cell markers was obtained. Expression levels of 24 of the 125 miRNAs correlated with expression of at least three out of four HLA Class I probes. Four miRNAs showed a positive correlation with HLA expression and infiltration with leukocytes, 20 a negative pattern. In the first group, high miRNA levels correlated with chromosome 3 loss/reduced BAP1 mRNA expression, in the second group low miRNA levels. The positive associations between miRNA-22 and miRNA-155 with HLA Class I were confirmed in the TCGA study and Rotterdam cohort, and with TAP1 in the Rotterdam data set; the negative associations between miRNA-125b2 and miRNA-211 and HLA-A, TAP1, and CD4 were confirmed in the Rotterdam set. We demonstrate two patterns: miRNAs can either be related to a high or a low HLA Class I/TAP1 expression and the presence of infiltrating lymphocytes and macrophages. However, both patterns were associated with chromosome 3/BAP1 status, which suggests a role for BAP1 loss in the regulation of HLA expression and inflammation in UM through miRNAs.Development and application of statistical models for medical scientific researc

    HDAC inhibition increases HLA class I expression in uveal melanoma

    Get PDF
    The treatment of uveal melanoma (UM) metastases or adjuvant treatment may imply immunological approaches or chemotherapy. It is to date unknown how epigenetic modifiers affect the expression of immunologically relevant targets, such as the HLA Class I antigens, in UM. We investigated the expression of HDACs and the histone methyl transferase EZH2 in a set of 64 UMs, using an Illumina HT12V4 array, and determined whether a histone deacetylase (HDAC) inhibitor and EZH2 inhibitor modified the expression of HLA Class I on three UM cell lines. Several HDACs (HDAC1, HDAC3, HDAC4, and HDAC8) showed an increased expression in high-risk UM, and were correlated with an increased HLA expression. HDAC11 had the opposite expression pattern. While in vitro tests showed that Tazemetostat did not influence cell growth, Quisinostat decreased cell sur

    Aqueous Humor Biomarkers Identify Three Prognostic Groups in Uveal Melanoma

    Get PDF
    Purpose: To investigate whether we can identify different patterns of inflammation in the aqueous humor of a uveal melanoma (UM)-containing eye, and whether these are related to prognosis. Meth

    Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing

    Get PDF
    Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform

    Absent B cells, agammaglobulinemia, and hypertrophic cardiomyopathy in folliculin-interacting protein 1 deficiency

    Get PDF
    Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound-heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondria! numbers and activity and phosphatidylinositol 3-kinase/AKT pathway, was impaired. These defects recapitulated the Fnip1(-/-) animal model. Moreover, we identified either uniparental disomy or copy-number variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of I immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity.Molecular Technology and Informatics for Personalised Medicine and Healt

    A case of angioimmunoblastic T-cell non-Hodgkin lymphoma with a neocentric inv dup(1)

    No full text
    Neocentromeres are rare epigenetic phenomena in which functional centromeres are formed onto novel chromosomal locations without any a-satellite DNA. To date, constitutional human neocentromeres have been reported in at least 90 cases. In cancer, however, the knowledge is much more limited. Acquired neocentromeres have been described in a particular class of lipomatous tumors (atypical lipomas and well-differentiated liposarcomas; ALP-WDLPS), three cases of acute myeloid leukemia (AML), one case of non-Hodgkin lymphoma (NHL), and one case of lung carcinoma. Here, we report on a 66-year-old male with angioimmunoblastic T-cell NHL. Cytogenetic analysis of his bone marrow showed multiple aberrations, including the presence of a supernumerary chromosome. Using the fluorescence in situ hybridization technique, the supernumerary chromosome was demonstrated to be entirely composed of material derived from chromosome I. It represented an inverted duplication of the segments between 1q21 and 1qter with a neocentromere in band 1q31. To our knowledge, this is the second reported case of NHL (both T-cell) with the presence of a neocentromere. The occurrence of neocentromeres in tumor cells, however, may be underestimated because of technical limitations during the routine diagnostic chromosomal analysis. The prognostic impact is therefore currently unknown. (C) 2010 Elsevier Inc. All rights reserved.Hereditary cancer genetic

    Effect of Heterogeneous Distribution of Monosomy 3 on Prognosis in Uveal Melanoma

    No full text
    Context.-Fluorescence in situ hybridization (FISH) analyses on tumor sections and on isolated nuclei showed that even low numbers of cells with monosomy of chromosome 3 adversely affected survival. Objective.-To determine what percentage of uveal melanoma cells with monosomy of chromosome 3 influences patient mortality. Design.-To determine the presence of monosomy 3, karyotyping and FISH on cultured cells and FISH on isolated nuclei were performed on 50 primary uveal melanomas. Clinical and pathologic prognostic factors were assessed and compared with 5-year survival data. Analyses were performed using Cox proportional hazards test, log-rank analysis, sensitivity, specificity, and positive and negative likelihood ratios. Results.-Combined karyotyping and FISH on cultured cells showed monosomy 3 in 19 of 50 cases (38%), whereas determination of the monosomy 3 status by FISH on isolated nuclei with a threshold of 5% assigned 31 of 50 cases (62%) to the monosomy-3 category. When monosomy 3 on isolated nuclei with a cutoff value of 5% was used, a significant difference in 5-year survival was present (hazard ratio, 15.5; P = .007), indicating that monosomy 3 in greater than 5% of tumor cells is related to death due to metastases. Conclusion.-In uveal melanoma, the presence of greater than 5% of cells with monosomy 3, as determined by FISH on isolated nuclei, is associated with the development of metastases within 5 years after enucleation. (Arch Pathol Lab Med. 2011;135:1042-1047
    corecore