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KEY PO INT S

l FNIP1 deficiency
causes
agammaglobulinemia,
variable neutropenia,
and hypertrophic
cardiomyopathy.

l FNIP1 deficiency
alters B-cell
development and
metabolism.

Agammaglobulinemia is themost profound primary antibody deficiency that can occur due
to an early termination of B-cell development. We here investigated 3 novel patients,
including the first known adult, from unrelated families with agammaglobulinemia, re-
current infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented
with intermittent or severe chronic neutropenia. We identified homozygous or compound-
heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss
of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and
phosphatidylinositol 3-kinase/AKTpathway, was impaired. These defects recapitulated the
Fnip12/2 animal model. Moreover, we identified either uniparental disomy or copy-number
variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of
immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic
mechanisms and support the clinical utility of exome sequencing and CNV analysis in

patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of
immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia,
and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and
potentially neutrophil activity. (Blood. 2021;137(4):493-499)

Introduction
Agammaglobulinemia is the most profound primary anti-
body deficiency that results from early termination of B-cell
development, which leads to the absence of mature circu-
lating B cells and very low or absent serum immunoglobulin
levels. To date, defects in BTK, IGHM, IGLL1, CD79A,
CD79B, BLNK, and PIK3R1 have been reported to cause
agammaglobulinemia.1

Disruption of folliculin interacting protein 1 (FNIP1) alters the
essential metabolic regulators AMPK and mTOR (Figure 1A),
resulting in profound B-cell deficiency and decreased natural
killer (NK) T cells, hypertrophic cardiomyopathy (HCM), and pre-
excitation syndrome.2-8 Contemporarily, another group9 clini-
cally described 2 families with inborn FNIP1 deficiency with
hypogammaglobulinemia, intermittent neutropenia, and HCM.
Here, we present functional validation of FNIP1 deficiency in
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Figure 1. Functional studies on patients with FNIP1 deficiency. (A) Schematic illustration displaying the interaction of FNIP1 in B cells. Positive and negative regulators of
mTORC1 signaling are depicted in green and in blue, respectively. Folliculin and Fnip1/2 have been described as both positive and negative regulators of mTORC1. (B)
Pedigrees showing 3 families with affected individuals harboring FNIP1 variants. Solid symbols indicate affected persons who were homozygous or compound heterozygous for
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3 novel families, including the first adult case. FNIP1 deficiency
results in HCM, absent circulating B cells, agammaglobulinemia,
and either severe or intermittent neutropenia.

Study design
This study was approved by the Institutional Review Boards/
Ethics Committees of Comitato Etico Brianza (PID-GENMET;
Monza, Italy) and Baylor College of Medicine (Houston, TX). All
study participants provided written informed consent.

Full methods are detailed in supplemental Materials andmethods
(available on the Blood Web site).

Results and discussion
Clinical phenotype
Patient 1 (P1) was born to consanguineous parents. The parents
of P2 and P3 denied consanguinity (Figure 1B). Clinical mani-
festations started in infancy (,1 year) including severe and/or
recurrent infections (detailed clinical histories in the supple-
mentary data). Sinopulmonary infections led to bronchial wall
thickening (P1), extensive bronchiectasis requiring lobectomy (P2), or
calcifications (P3; supplemental Figure 1). All patients had left ven-
tricular HCM (supplemental Figure 2; supplemental Table 1). P2 also
hadan interatrial communication requiring surgical correction, andP3
had severe tricuspid valve regurgitation, severe right ventricle di-
latation, and pre-excitation syndrome. All patients had no imaging or
laboratory signs of renal disease. For P1, neurological examination
showed developmental delay associated with magnetic resonance
imaging abnormalities (supplemental Figure 3). P3 had Crohn disease
that required multiple bowel surgeries. All patients had absent circu-
lating B cells and agammaglobulinemia (Table 1) requiring immuno-
globulin replacement therapy. Two out of 3 patients had neutropenia,
either severe (P1; neutrophil count consistently ,0.5 3 109/L) or in-
termittent (P3), which was confirmed outside the infectious episodes
and may have contributed to recurrent and severe infections.

FNIP1 variants in patients with
agammaglobulinemia
Trio whole-exome sequencing was performed in all families.
No candidates were identified within recognized primary
immunodeficiency–associated genes.10-13 We identified distinct
biallelic variants in FNIP1, which were not present in public da-
tabases (gnomAD, ESP, and 1000 Genomes) and exclusive to
these families in our internal databases. For P1, the homozygous
NM_133372.2:c.868C.T nonsense variant in FNIP1 is located in
exon 9 and predicted to result in a premature stop codon
(p.R290*). The variant was confirmed by Sanger sequencing, and
each parent was a heterozygous carrier (Figure 1B; supplemental
Figure 4A). A homozygous splicing donor variant (c.330611G.A;
supplemental Figure 5) was identified in P2. Sanger sequencing
confirmed the father to be a heterozygous carrier of the variant,
while it was not present in themother. Exome data were consistent

with paternal uniparental disomy of chromosome 5 leading to
homozygosity of this variant in P2 (supplemental Materials and
methods; supplemental Figure 6). For P3, whole-exome se-
quencing showed amaternally inherited deletion of FNIP1 exons 9
to 18 and a paternally inherited single-nucleotide variant
(c.3218delT;p.L1073Wfs*32; Figure 1B).

We evaluated functional consequences of the FNIP1 variants in
the blood samples. FNIP1 messenger RNA levels were signifi-
cantly decreased in P1, but not absent, most likely due to in-
complete nonsense-mediated decay (Figure 1C). Because FNIP1
is expressed in activated peripheral lymphocytes,3,5 to de-
termine whether the variants altered protein stability, we ex-
amined the presence of FNIP1 protein in stimulated cultured
T cells. Immunoblotting demonstrated the complete absence of
FNIP1 in all the patients (Figure 1D).

Immune-cell phenotype in FNIP1 deficiency
Analysis of the T-cell subsets showed mildly and intermittently in-
creased CD31 in P1 and P3. Standard lymphocyte proliferative re-
sponse to specific antigens and mitogens was normal in P1 and P3
and decreased in P2 (Table 1). Using IL-2 and anti-CD28/CD3, P1
T cells showed increased apoptosis between days 7 and 11. Apo-
ptosis was more prominent for CD81 compared with CD41 T cells
(supplemental Figure 7). NK T cells were decreased in P1 Table 1).

Peripheral B lymphocytes were undetectable or markedly de-
creased in all patients Table 1). For P1, bone marrow exami-
nation displayed delayed granulocyte maturation, with no overt
arrest. B-cell precursors did not show evidence of a maturation
block, unlike classical agammaglobulinemia,14 although a rela-
tive increase of earlier maturation stages (pro-B and pre-B1) and
a significant reduction of immature B cells were observed
(Figure 1E; supplemental Figure 8).

FNIP1 deficiency is associated with altered
cell metabolism
We hypothesized that human FNIP1 deficiency may hamper
B-cell metabolism similar to Fnip1-deficient mice.2-8 Indeed,
circulating P1 B cells exhibited increased numbers of mito-
chondria and mitochondrial activity relative to healthy control
B cells (Figure 1F; supplemental Figure 9). Next, we examined
the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt
pathway. We observed constitutive hyperactivation of PI3K
downstream targets in P1 B-cell progenitors relative to healthy
control B-cell precursors (Figure 1G). Specifically, p4EBP1 and
pAkt473 were significantly activated (12.46 6 1.86 vs 4.00 6
0.53, P5 .0002; 3.826 1.78 vs 0.976 0.09, P5 .029). However,
no difference could be found in S6 phosphorylation (1.466 0.14
vs 2.706 0.51, P5 .14). To assess the accuracy of our approach,15

we tested NPV-BEZ 235 as a specific inhibitor of the PI3K pathway
and observed that it was able to significantly decrease p4EBP1
(mean 12.46 6 1.86 vs 2.58 6 0.32, P 5 .006). These results

Figure 1 (continued) themutant alleles; half solid symbols, heterozygous persons; circles, female familymembers; square, male familymembers; double lines, consanguinity. (C)
Expression of FNIP1 messenger RNA in P1 (quantitative reverse-transcription polymerase chain reaction analysis). Data are expressed as mean 6 standard deviation (2
independent experiments, each performed in triplicate). Statistical analysis was performed using 1-way analysis of variance. (D) FNIP1 protein expression in T cells. (E) Bone
marrow B-cell immunophenotyping in P1 compared with a healthy control and 1 Bruton tyrosine kinase (BTK) patient (representative experiment). (F) Quantification of total
mitochondrial abundance and mitochondrial activity in circulating CD191 cells isolated from an healthy control and P1 (representative experiment). AU, arbitrary units. (G)
Evaluation of pAKT, pS6, and p4EBP1 levels in B-cell bone marrow progenitors from P1 and a healthy control (2 experiments). In all graphs, **P, .01 and ***P, .001. Data are
presented as means 6 standard deviation. AMP, adenosine 59-monophosphate; ATP, adenosine triphosphate; HC, healthy control; WT, wild type.
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suggest that the sensitivity to PI3K inhibition is determined by the
activation of the PI3K/Akt pathway in FNIP1-deficient patients.

Mouse Fnip1 consists of 1165 amino acids and shares 91%
amino acid identity with human FNIP1.5 Fnip1 plays a non-
redundant role in early B-cell development and metabolism,
skeletal muscle fiber type specification, and cardiac function.2-8

Our report confirms that the clinical and immunological phe-
notypes are strikingly overlapping (ie, HCM, pre-excitation
syndrome, and early and severe B-cell defect with agamma-
globulinemia). FNIP1 deficiency can be detected even in young
adults. Moreover, we identified unconventional heterogeneous
genetic etiologies for FNIP1 deficiency in 2 patients, expanding
the variant spectrum of this novel inborn error of immunity
(supplemental Figure 10A). In fact, only a limited number of cases
of chromosome 5 uniparental disomy have been reported.16 Our
findings argue for the clinical use of exome sequencingwith copy-
number variant analysis in patients with complex phenotypes.
Importantly, in 1 patient, we have provided for the first time some
of the functional studies (increased number of mitochondria and
mitochondrial activity and 4EBP1 activation) that recapitulate the
alterations described in Fnip1-deficient mice.

Some aspects nonetheless remain controversial. Contradictory re-
sults concerning the activation of the PI3K/Akt pathway have been
described in Fnip12/2mice7,17 (supplemental Table 2). Unlike Fnip1-
deficientmice,17 noFNIP1patients have hadovert clinical symptoms
of renal disease,9 but the presence of renal cysts has not been in-
vestigated by renal biopsies. Only 1 proband has had myopathy9

(supplemental Figure 10B). Here, we report the coexistence of heart
defects other than HCM and pre-excitation syndrome in FNIP1
deficiency. Elsewhere,9 patients carrying biallelic missense variants
showed milder B-cell lymphopenia, and 1 individual had only de-
creased immunoglobulinM (IgM) with normal IgG and elevated IgA
levels. These elements suggest that FNIP1 deficiency could be a
protean disorder resembling also common variable immunodefi-
ciency phenotype. The T-cell compartment was unaffected in
Fnip12/2mice.5,7 Althoughpatients have not shownany clinical signs
of defective T-cell function, lymphocytosis and/or defective T-cell
proliferation with increased apoptosis have been found in some
patients (supplemental Figure 10B). Granulocytes are not affected
in the Fnip12/2 mouse,7 yet 4 patients have displayed severe or
intermittent neutropenia, and 2 have monocytosis. This finding is
reminiscent of the neutrophil survival defect seen in Bruton tyrosine
kinase–associated agammaglobulinemia.18 As in other inborn error
of immunity,19,20 FNIP1 deficiencymaybe associatedwith severe or
intermittent neutropenia, or even episodic normal neutrophil
counts. Central nervous system involvement is present in 4 out of 6
patients. These manifestations only occurred in consanguineous
pedigrees andmay result either fromother genetic changes not yet
discovered or from FNIP1 phenotypic heterogeneity.

Collectively, we identified novel inherited FNIP1 variants causing
FNIP1 deficiency, which affects B-cell survival and metabolism
recapitulating the Fnip12/2 animal model. FNIP1 deficiency should
be considered in patients with hypo- or agammaglobulinemia,
congenital heart defects, particularly HCM, and neutropenia.

Acknowledgments
The authors thank the patients and their families for participating in the
study; Donna M. Muzny, Shalini N. Jhangiani, Richard A. Gibbs, and

Haowei Du from the Baylor College of Medicine Human Genome Se-
quencing Center and Baylor-Hopkins Center for Mendelian Genomics
(Houston, TX) for whole-exome sequencing and bioinformatics support;
Nicholas L. Rider and Gina Cahill from the Texas Children’s Hospital
William T. Shearer Center for Human Immunobiology and the Jeffrey
Modell Foundation at Texas Children’s Hospital (Houston, TX) for vali-
dation studies; Francesco Canonico from the Department of Neurora-
diology, University of Milan-Bicocca, San Gerardo Hospital, ASST di
Monza (Monza, Italy) for the brain computed tomography study; Fran-
cesca Pluchinotta and Antonella Camporeale from Istituto di Ricovero e
Cura a Carattere Scientifico Policlinico San Donato (Milan, Italy) for the
cardiac magnetic resonance imaging study; Giuseppe Limoli from Unità
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