1,152 research outputs found

    The Critical Aggregation Concentration of ß-Lactoglobulin-Based Fibril Formation

    Get PDF
    The critical aggregation concentration (CAC) for fibril formation of ß-lactoglobulin (ß-lg) at pH 2 was determined at 343, 353, 358, 363, and 383 K using a Thioflavin T assay and was approximately 0.16 wt%. The accuracy of the CAC was increased by measuring the conversion into fibrils at different stirring speeds. The corresponding binding energy per mol, as determined from the CAC, was 13 RT (~40 kJ mol¿1) for the measured temperature range. The fact that the CAC was independent of temperature within the experimental error indicates that the fibril formation of ß-lg at pH 2 and the measured temperature range is an entropy-driven process

    CHD3 Dissociation on the Kinked Pt(210) Surface: A Comparison of Experiment and Theory

    Get PDF
    To be able to simulate activated heterogeneously catalyzed reactions on the edge and corner sites of nanoparticles, a method for calculating accurate activation barriers for the reactions is required. We have recently demonstrated that a semiempirical specific reaction parameter (SRP) density functional developed to describe CHD3 dissociation on a flat Ni(111) surface is transferable to describing the same reaction on a stepped Pt(211) surface. In the current work, we compare initial sticking coefficients measured using the King and Wells beam reflectivity technique and calculated from ab initio molecular dynamics trajectories using the same SRP functional for CHD3 dissociation on a kinked Pt(210) surface at a temperature of 650 K. The calculated sticking coefficients overestimate those determined experimentally, with an average energy shift between the two curves of 13.6 kJ/mol, which is over a factor of 3 times higher than the 4.2 kJ/mol limit that defines chemical accuracy. This suggests the SRP functional predicts an activation barrier that is too low for the dissociation on the least coordinated kink atom, which is the site of the lowest energy transition state and where most of the dissociation occurs in the calculations.Article / Letter to editorLIC/ES/Theoretical Chemistr

    Prediction of response to biological treatment with monoclonal antibodies in severe asthma

    Get PDF
    In recent years, major developments have occurred in severe asthma management. Different asthma phenotypes and subgroups have been identified and new treatment options have become available. A total of five monoclonal antibodies are currently approved in severe asthma treatment: omalizumab, mepolizumab, reslizumab, benralizumab and dupilumab. These drugs have been shown to reduce exacerbations and to have an oral corticosteroid-sparing effect in many severe asthma patients. However, biological treatment is not successful in all patients and should be discontinued in non-responsive patients. Treating the right patient with the right biologic, and therefore biologic response prediction, has become a major point of interest in severe asthma management. A variety of response outcomes is utilized in the different clinical trials, as well as a huge range of potential predicting factors. Also, regarding the timing of the response evaluation, there are considerable differences between studies. This review summarizes the results from studies on predicting responses and responders to biological treatment in severe asthma, taking into account clinical, functional and inflammatory parameters assessed prior to the start of treatment as well as following a few months of therapy. In addition, future perspectives are discussed, highlighting the need for more research to improve patient identification and treatment responses in the field of biological treatment in severe asthma

    Atomic diffraction from nanostructured optical potentials

    Full text link
    We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.

    Transferability of the SRP32-vdW specific reaction parameter functional to CHD3 dissociation on Pt(110)-(2 × 1)

    Get PDF
    Stepped transition metal surfaces, including the reconstructed Pt(110)-(2 × 1) surface, can be used to model the effect of line defects on catalysts. We present a combined experimental and theoretical study of CHD3 dissociation on this surface. Theoretical predictions for the initial sticking coefficients, S0, are obtained from ab initio molecular dynamics calculations using the specific reaction parameter (SRP) approach to density functional (DF) theory, while the measured sticking coefficients were obtained using the King and Wells method. The SRP DF used here had been previously derived for methane dissociation on Pt(111) so that the experiments test the transferability of this SRP DF to methane + Pt(110)-(2 × 1). The agreement between the experimental and calculated S0 is poor, with the average energy shift between the theoretical and measured reactivities being 20 kJ/mol. There are two factors which may contribute to this difference, the first of which is that there is a large uncertainty in the calculated sticking coefficients due to a large number of molecules being trapped on the surface at the end of the 1 ps propagation time. The second is that the SRP32-vdW functional may not accurately describe the Pt(110)-(2 × 1) surface. At the lowest incident energies considered here, Pt(110)-(2 × 1) is more reactive than the flat Pt(111) surface, but the situation is reversed at incident energies above 100 kJ/mol.Theoretical Chemistr

    IGFBP2 Produces Rapid-Acting and Long-Lasting Effects in Rat Models of Posttraumatic Stress Disorder Via a Novel Mechanism Associated with Structural Plasticity

    Get PDF
    Background: Posttraumatic stress disorder is an anxiety disorder characterized by deficits in the extinction of aversive memories. Insulin-like growth factor 1 (IGF1) is the only growth factor that has shown anxiolytic and antidepressant properties in human clinical trials. In animal studies, insulin-like growth factor binding protein 2 (IGFBP2) shows both IGF1-dependent and IGF1-independent pharmacological effects, and IGFBP2 expression is upregulated by rough-and-tumble play that induces resilience to stress. Methods: IGFBP2 was evaluated in Porsolt, contextual fear conditioning, and chronic unpredictable stress models of posttraumatic stress disorder. The dependence of IGFBP2 effects on IGF1- and AMPA-receptor activation was tested using selective receptor antagonists. Dendritic spine morphology was measured in the dentate gyrus and the medial prefrontal cortex 24 hours after in vivo dosing. Results: IGFBP2 was 100 times more potent than IGF1 in the Porsolt test. Unlike IGF1, effects of IGFBP2 were not blocked by the IGF1-receptor antagonist JB1, or by the AMPA-receptor antagonist 2,3-Dioxo-6-nitro-1,2,3,4 tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) in the Porsolt test. IGFBP2 (1 microg/kg) and IGF1 (100 microg/kg i.v.) each facilitated contextual fear extinction and consolidation. Using a chronic unpredictable stress paradigm, IGFBP2 reversed stress-induced effects in the Porsolt, novelty-induced hypophagia, sucrose preference, and ultrasonic vocalization assays. IGFBP2 also increased mature dendritic spine densities in the medial prefrontal cortex and hippocampus 24 hours postdosing. Conclusions: These data suggest that IGFBP2 has therapeutic-like effects in multiple rat models of posttraumatic stress disorder via a novel IGF1 receptor-independent mechanism. These data also suggest that the long-lasting effects of IGFBP2 may be due to facilitation of structural plasticity at the dendritic spine level. IGFBP2 and mimetics may have therapeutic potential for the treatment of posttraumatic stress disorder
    corecore