3,076 research outputs found
InAs-AlSb quantum wells in tilted magnetic fields
InAs-AlSb quantum wells are investigated by transport experiments in magnetic
fields tilted with respect to the sample normal. Using the coincidence method
we find for magnetic fields up to 28 T that the spin splitting can be as large
as 5 times the Landau splitting. We find a value of the g-factor of about 13.
For small even-integer filling factors the corresponding minima in the
Shubnikov-de Haas oscillations cannot be tuned into maxima for arbitrary tilt
angles. This indicates the anti-crossing of neighboring Landau and spin levels.
Furthermore we find for particular tilt angles a crossover from even-integer
dominated Shubnikov-de Haas minima to odd-integer minima as a function of
magnetic field
Constraints on transmission, dispersion, and density of states in dielectric multilayers and stepwise potential barriers with arbitrary layer arrangement
Normal-incidence transmission and dispersion properties of optical
multilayers and one-dimensional stepwise potential barriers in the
non-tunneling regime are analytically investigated. The optical paths of every
constituent layer in a multilayer structure, as well as the parameters of every
step of the stepwise potential barrier, are constrained by a generalized
quarter-wave condition. No other restrictions on the structure geometry is
imposed, i.e., the layers are arranged arbitrarily. We show that the density of
states (DOS) spectra of the multilayer or barrier in question are subject to
integral conservation rules similar to the Barnett-Loudon sum rule but ocurring
within a finite frequency or energy interval. In the optical case, these
frequency intervals are regular. For the potential barriers, only non-periodic
energy intervals can be present in the spectrum of any given structure, and
only if the parameters of constituent potential steps are properly chosen.
Abstract The integral conservation relations derived analytically have also
been verified numerically. The relations can be used in dispersion-engineered
multilayer-based devices, e.g., ultrashort pulse compressors or ultracompact
optical delay lines, as well as to design multiple-quantum-well electronic
heterostructures with engineered DOS.Comment: 10 pages, 5 figures, to be submitted to PR
Interaction primitives for human-robot cooperation tasks
To engage in cooperative activities with human
partners, robots have to possess basic interactive abilities
and skills. However, programming such interactive skills is a
challenging task, as each interaction partner can have different
timing or an alternative way of executing movements. In this
paper, we propose to learn interaction skills by observing how
two humans engage in a similar task. To this end, we introduce
a new representation called Interaction Primitives. Interaction
primitives build on the framework of dynamic motor primitives
(DMPs) by maintaining a distribution over the parameters of
the DMP. With this distribution, we can learn the inherent
correlations of cooperative activities which allow us to infer the
behavior of the partner and to participate in the cooperation.
We will provide algorithms for synchronizing and adapting the
behavior of humans and robots during joint physical activities
Andreev magnetotransport in low-dimensional proximity structures: Spin-dependent conductance enhancement
We study the excess conductance due to the superconducting proximity effect
in a ballistic two-dimensional electron system subject to an in-plane magnetic
field. We show that under certain conditions the interplay of the Zeeman spin
splitting and the effect of a screening supercurrent gives rise to a
spin-selective Andreev enhancement of the conductance and anomalies in its
voltage, temperature and magnetic field characteristics. The magnetic-field
influence on Andreev reflection is discussed in the context of using
superconducting hybrid junctions for spin detection.Comment: 4 pages, 5 figure
The use of mobile phones for skin tumor screening
A lot of importance is attributed to mobile telemedicine these days, a topic that encompasses a wide and ever growing range of applications. Small, handheld devices such as camera mobile phones have come into every day use providing technically sophisticated tasks on a user-friendly level and can therefore be easily used in various fields of telemedicine. Dermatology is a perfect candidate for the use of telemedicine tools in general, as well as mobile devices in particular. The unique aspect of mobile teledermatology is that this system represents a filtering, or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. In order to investigate the feasibility of teleconsultation using a new generation of cellular phones, a clinical study to evaluate the accuracy of online diagnosis of skin tumours was conducted. Teledermoscopy represents a recent development of teledermatology that might add up additional information in the diagnosis of pigmented skin lesions. Teledermatology, mobile as well as stationary, can advance the reliability of diagnosis by expert consultations without expensive and time-consuming relocations. Consequently, the quality of patient's care can be raised and the costs of the health care system can be reduced
Structure and properties of powder cathode materials of titanium - titanium carbide system
We discuss structural and electrical properties of AlAsxSb1-x bulk layers and InAs/AlAsxSb1-x heterostructures grown by molecular beam epitaxy over a wide range of composition (0≤x≤0.4). We demonstrate the strong sensitivity of the structural quality and the composition of Al(As,Sb) on growth parameters such as substrate temperature, As : Sb flux ratio, as well as total group-V flux, and discuss the influence of a miscibility gap on the molecular beam epitaxial growth of Al(As,Sb). We also find that both the composition and the growth temperature strongly influence the surface morphology: Al(As,Sb) - especially when grown at low substrate temperature - appears to grow in an island-coalescence mode rather than in a two-dimensional manner as it does for pure AlAs or AlSb. The electrical transport along AlSb/InAs/Al(As,Sb) quantum wells is strongly influenced by the growth temperature of Al(As,Sb) and we observe the formation of additional defects when the top barrier was grown at low substrate temperature. The transport across InAs/Al(As,Sb) heterojunctions was found to depend on both the growth temperature and the arsenic composition. An increase in arsenic composition results in a strongly decreased current across the heterojunction. From ballistic electron emission spectroscopy experiments, we confirm the transition from a staggered band lineup for InAs/AlSb to a straddled band lineup for InAs/AlAsxSb1-x for x=0.16
No differences in value-based decision-making due to use of oral contraceptives
Fluctuating ovarian hormones have been shown to affect decision-making processes in women. While emerging evidence suggests effects of endogenous ovarian hormones such as estradiol and progesterone on value-based decision-making in women, the impact of exogenous synthetic hormones, as in most oral contraceptives, is not clear. In a between-subjects design, we assessed measures of value-based decision-making in three groups of women aged 18 to 29 years, during (1) active oral contraceptive intake (N = 22), (2) the early follicular phase of the natural menstrual cycle (N = 20), and (3) the periovulatory phase of the natural menstrual cycle (N = 20). Estradiol, progesterone, testosterone, and sex-hormone binding globulin levels were assessed in all groups via blood samples. We used a test battery which measured different facets of value-based decision-making: delay discounting, risk-aversion, risk-seeking, and loss aversion. While hormonal levels did show the expected patterns for the three groups, there were no differences in value-based decision-making parameters. Consequently, Bayes factors showed conclusive evidence in support of the null hypothesis. We conclude that women on oral contraceptives show no differences in value-based decision-making compared to the early follicular and periovulatory natural menstrual cycle phases. Copyright © 2022 Lewis, Kimmig, Kroemer, Pooseh, Smolka, Sacher and Derntl
Absorption and wavepackets in optically excited semiconductor superlattices driven by dc-ac fields
Within the one-dimensional tight-binding minibands and on-site
Coloumbic interaction approximation, the absorption spectrum and coherent
wavepacket time evolution in an optically excited semiconductor superlattice
driven by dc-ac electric fields are investigated using the semiconductor Bloch
equations.
The dominating roles of the ratios of dc-Stark to external ac frequency, as
well as ac-Stark to external ac frequency, is emphasized. If the former is an
integer , then also harmonics are present within one Stark
frequency, while the fractional case leads to the formation of excitonic
fractional ladders. The later ratio determines the size and profile of the
wavepacket. In the absence of excitonic interaction it controls the maximum
size wavepackets reach within one cycle, while the interaction produces a
strong anisotropy and tends to palliate the dynamic wavepacket localization.Comment: 14 pages, 7 postscript figure
- …