95 research outputs found

    Application of analytical, experimental, semiempirical and Monte Carlo methods for efficiency calibration of HPGe detectors in environmental samples gamma spectrometry

    Get PDF
    ΠšΠ²Π°Π»ΠΈΡ‚Π΅Ρ‚ Π³Π°ΠΌΠ° ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΡΠΊΠΈΡ… ΠΌΠ΅Ρ€Π΅ΡšΠ° Ρƒ ΠΎΠΏΡˆΡ‚Π΅ΠΌ ΡΡƒΡ‡Π°Ρ˜Ρƒ Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ зависи ΠΎΠ΄ познавања Сфикасности Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜Π΅ Π·Π° посСбнС ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅Π²Π΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π΅ ΠΌΠ΅Ρ€Π΅ΡšΠ° ΠΈ карактСристика ΠΌΠ΅Ρ€Π΅Π½ΠΎΠ³ ΡƒΠ·ΠΎΡ€ΠΊΠ°. Π‘ ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π½Π° Ρ‚ΠΎ Π΄Π° ΡƒΠ·ΠΎΡ€Ρ†ΠΈ који сС ΠΌΠ΅Ρ€Π΅ ΠΌΠΎΠ³Ρƒ Π±ΠΈΡ‚ΠΈ Π²Π΅ΠΎΠΌΠ° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈ ΠΏΠΎ Ρ…Π΅ΠΌΠΈΡ˜ΡΠΊΠΎΠΌ саставу ΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΠΈ, ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π° нијС доступна Ρƒ свакој ΡΠΈΡ‚ΡƒΠ°Ρ†ΠΈΡ˜ΠΈ. ΠŸΠΎΡ€Π΅Π΄ Ρ‚ΠΎΠ³Π°, ΠΊΠΎΠ΄ ΠΌΠ΅Ρ€Π΅ΡšΠ° Ρƒ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΡ˜ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΠΈ, ΡˆΡ‚ΠΎ јС Π½Π°Ρ˜Ρ‡Π΅ΡˆΡ›ΠΈ ΡΠ»ΡƒΡ‡Π°Ρ˜ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΌΠ΅Ρ€Π΅ΡšΠ° ΡƒΠ·ΠΎΡ€Π°ΠΊΠ° ΠΈΠ· ΠΆΠΈΠ²ΠΎΡ‚Π½Π΅ срСдинС, Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ ΠΊΠΎΠΈΠ½Ρ†ΠΈΠ΄Π΅Π½Ρ‚Π½ΠΎΠ³ ΡΡƒΠΌΠΈΡ€Π°ΡšΠ° ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€Π±ΡƒΡ˜Π΅ спСктар ΠΈ мСња ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½Π΅ испод ΠΏΠΈΠΊΠΎΠ²Π° Ρƒ спСктру ΡˆΡ‚ΠΎ Ρ€Π΅Π·ΡƒΠ»Ρ‚ΡƒΡ˜Π΅ Π½Π΅Ρ‚Π°Ρ‡Π½ΠΈΠΌ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΠΌΠ° ΠΌΠ΅Ρ€Π΅ΡšΠ°. Π’Π°Π΄Π° сС Ρ˜Π°Π²Ρ™Π° ΠΏΠΎΡ‚Ρ€Π΅Π±Π° Π·Π° Ρ€Π°Π·Π²ΠΈΡ˜Π°ΡšΠ΅ΠΌ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π·Π° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Ρƒ ΠΈ спСцифичних Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π° Π·Π° сваки ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½ΠΈ ΡΠ»ΡƒΡ‡Π°Ρ˜. ΠœΠ΅Ρ‚ΠΎΠ΄Π΅ ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ ΠΌΠΎΠ³Ρƒ ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°Ρ‚ΠΈ ΠΌΠ΅Ρ€Π΅ΡšΠ΅ сСртификованих ΠΈΠ·Π²ΠΎΡ€Π° ΠΈΠ»ΠΈ сСкундарних Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π°, ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΈΡ… Π·Π° ΠΈΠ·Ρ€Π°Ρ‡ΡƒΠ½Π°Π²Π°ΡšΠ΅ Сфикасности ΠΈΠ»ΠΈ ΡΠΈΠΌΡƒΠ»ΠΈΡ€Π°ΡšΠ΅ спСктралног ΠΎΠ΄Π³ΠΎΠ²ΠΎΡ€Π° инструмСнта. Π£ ΠΎΠ²ΠΎΠΌ Ρ€Π°Π΄Ρƒ прСдстављСно je ΠΈ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½ΠΎ Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… приступа ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜ΠΈ Сфикасности ΠΌΠ΅Ρ€Π½ΠΎΠ³ систСма. Π’ΠΎ су: - ЕкспСримСнтални ΠΌΠ΅Ρ‚ΠΎΠ΄, који ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π° ΠΌΠ΅Ρ€Π΅ΡšΠ΅ сСкундарних Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π° који су ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΠΈ ΠΈ Ρ…Π΅ΠΌΠΈΡ˜ΡΠΊΠΎΠΌ саставу Π½Π°Ρ˜ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ½ΠΈΡ˜ΠΈ ΡƒΠ·ΠΎΡ€Ρ†ΠΈΠΌΠ° који сС ΠΌΠ΅Ρ€Π΅. Овај ΠΌΠ΅Ρ‚ΠΎΠ΄ дајС Π½Π°Ρ˜Ρ‚Π°Ρ‡Π½ΠΈΡ˜Π΅ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π΅ Π°Π»ΠΈ истоврСмСно Π·Π°Ρ…Ρ‚Π΅Π²Π° Π΄ΡƒΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅ ΠΏΡ€ΠΈΠΏΡ€Π΅ΠΌΠ΅ сСкундарних Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π° ΠΈ Π΄ΡƒΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅ ΠΌΠ΅Ρ€Π΅ΡšΠ°. Π‘Π²Π΅ ΠΎΠ²ΠΎ ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ ΠΈΠ·Π²ΠΎΡ€ Π½ΠΈΠ·Π° ΠΌΠ΅Ρ€Π½ΠΈΡ… нСсигурности којС су послСдица ΡƒΠΏΡ€Π°Π²ΠΎ Ρ‚Π΅ ΠΏΡ€ΠΈΠΏΡ€Π΅ΠΌΠ΅. -Аналитички ΠΌΠ΅Ρ‚ΠΎΠ΄, који ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π° ΡƒΡΠΏΠΎΡΡ‚Π°Π²Ρ™Π°ΡšΠ΅ Π°Π½Π°Π»ΠΈΡ‚ΠΈΡ‡ΠΊΠ΅ зависности ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ Сфикасности ΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΡΠΊΠΈΡ… карактСристика ΠΌΠ΅Ρ€Π΅Π½ΠΎΠ³ ΡƒΠ·ΠΎΡ€ΠΊΠ° ΠΈ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π°. Овај ΠΌΠ΅Ρ‚ΠΎΠ΄ јС апроксимативан с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π½Π° Ρ‚ΠΎ Π΄Π° су ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΈ који ΠΎΠΏΠΈΡΡƒΡ˜Ρƒ зависност Π·Π° Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΈΡ‡Π½Π΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π΅ Π²Ρ€Π»ΠΎ ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠΎΠ²Π°Π½ΠΈ ΠΈ ΡšΠΈΡ…ΠΎΠ²ΠΎ Ρ€Π΅ΡˆΠ°Π²Π°ΡšΠ΅ јС ΠΌΠΎΠ³ΡƒΡ›Π΅ јСдино Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΠΌ ΠΏΡƒΡ‚Π΅ΠΌ. Π£Π²Π΅Π΄Π΅Π½Π΅ Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π΅ доприносС ΠΌΠ΅Ρ€Π½ΠΎΡ˜ нСсигурности Π°Π»ΠΈ Ρƒ ΠΎΠΊΠ²ΠΈΡ€ΠΈΠΌΠ° ΠΏΠΎΡ‚Ρ€Π΅Π±Π° ΠΌΠ΅Ρ€Π΅ΡšΠ° ΡƒΠ·ΠΎΡ€Π°ΠΊΠ° ΠΈΠ· ΠΆΠΈΠ²ΠΎΡ‚Π½Π΅ срСдинС ΠΌΠΎΠ³Ρƒ Π±ΠΈΡ‚ΠΈ ΠΏΡ€ΠΈΡ…Π²Π°Ρ‚Ρ™ΠΈΠ²Π΅. -ΠŸΠΎΠ»ΡƒΠ΅ΠΌΠΈΠ΅ΠΌΠΏΠΈΡ€ΠΈΡ˜ΡΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ (прСдстављСн Ρƒ ΠΎΠ²ΠΎΠΌ Ρ€Π°Π΄Ρƒ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΎΠΌ Π·Π° трансфСр Сфикасности, EFFTRAN) користи зависност Сфикасности Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΎΠ΄ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ просторног ΡƒΠ³Π»Π° ΠΏΠΎΠ΄ којим сС ΡƒΠ·ΠΎΡ€Π°ΠΊ Π½Π°Π»Π°Π·ΠΈ Ρƒ односу Π½Π° Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ ΠΈ Π½Π° основу Ρ‚ΠΎΠ³Π° Ρ€Π°Ρ‡ΡƒΠ½Π° трансфСр Сфикасности ΠΎΠ΄ Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½Π΅ ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΎΠ½Π΅ ΠΊΡ€ΠΈΠ²Π΅ Π΄ΠΎ ΠΊΡ€ΠΈΠ²Π΅ Π·Π° Ρ€Π΅Π°Π»Π½Ρƒ ΠΌΠ΅Ρ€Π½Ρƒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Ρƒ ΠΈ ΠΊΠΎΡ€Π΅ΠΊΡ†ΠΈΡ˜Ρƒ Π½Π° ΠΊΠΎΠΈΠ½Ρ†ΠΈΠ΄Π΅Π½Ρ‚Π½Π° ΡΡƒΠΌΠΈΡ€Π°ΡšΠ°. -ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ (прСдстављСн Ρƒ ΠΎΠ²ΠΎΠΌ Ρ€Π°Π΄Ρƒ програмским ΠΏΠ°ΠΊΠ΅Ρ‚ΠΈΠΌΠ° PHOTON ΠΈ GEANT4) који сС користи Π·Π° ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Ρƒ спСктралног ΠΎΠ΄Π³ΠΎΠ²ΠΎΡ€Π° Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° основу познавања процСса који Π΄ΠΎΠ²ΠΎΠ΄Π΅ Π΄ΠΎ дСпоновања Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ Ρƒ ΠΌΠ΅Π΄ΠΈΡ˜ΡƒΠΌΡƒ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ ΡΠ»ΡƒΡ‡Π°Ρ˜Π½ΠΎΠ³ ΠΈΠ·Π±ΠΎΡ€Π° Π±Ρ€ΠΎΡ˜Π΅Π²Π°. Π‘Π²Π°ΠΊΠΈ ΠΎΠ΄ Π½Π°Π²Π΅Π΄Π΅Π½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π° јС ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½ Π·Π° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Ρƒ HPGe Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° који сС користС Ρƒ Π›Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΡ˜ΠΈ Π·Π° Π·Π°ΡˆΡ‚ΠΈΡ‚Ρƒ ΠΎΠ΄ Π·Ρ€Π°Ρ‡Π΅ΡšΠ° ΠΈ Π·Π°ΡˆΡ‚ΠΈΡ‚Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½Π΅ срСдинС Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π° Π·Π° Π½ΡƒΠΊΠ»Π΅Π°Ρ€Π½Π΅ Π½Π°ΡƒΠΊΠ΅ Π’ΠΈΠ½Ρ‡Π°. Као Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ добијСнС су Сфикасности Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π°, са ΠΏΡ€ΠΈΠ΄Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΌ ΠΌΠ΅Ρ€Π½ΠΈΠΌ нСсигурностима. Π‘ ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π½Π° Ρ‚ΠΎ Π΄Π° сС ΠΌΠ΅Ρ€Π΅ΡšΠ΅ сСкундарних Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π° сматра Π½Π°Ρ˜Ρ‚Π°Ρ‡Π½ΠΈΡ˜ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅, Сфикасности добијСнС Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ° су ΡƒΠΏΠΎΡ€Π΅Ρ’Π΅Π½Π΅ са СкспСримСнталним Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΠΌΠ° Π΄Π° Π±ΠΈ сС ΡƒΡ‚Π²Ρ€Π΄ΠΈΠ»ΠΎ слагањС ΠΈΠ»ΠΈ нСслагањС Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΌΠ΅Ρ€Π½Π΅ нСсигурности. ΠŸΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ΠΌ јС установљСно Π΄Π° сС Сфикасности добијСнС Π°Π½Π°Π»ΠΈΡ‚ΠΈΡ‡ΠΊΠΎΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ€Π°Π·Π»ΠΈΠΊΡƒΡ˜Ρƒ Ρƒ односу Π½Π° СкспСримСнтално добијСнС Сфикасности Ρƒ опсСгу ΠΎΠ΄ 1 Π΄ΠΎ 14%, ΠΏΡ€ΠΈ Ρ‡Π΅ΠΌΡƒ су врСдности ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°Π½Π΅ Π·Π° 3 Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π΅ којС су Π½Π°Ρ˜Ρ‡Π΅ΡˆΡ›Π΅ Ρƒ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈ Ρƒ ΠΌΠ΅Ρ€Π΅ΡšΡƒ ΡƒΠ·ΠΎΡ€Π°ΠΊΠ° ΠΈΠ· ΠΆΠΈΠ²ΠΎΡ‚Π½Π΅ срСдинС. Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ добијСни трансфСром Сфикасности, ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ Π·Π° тачкасти ΠΈΠ·Π²ΠΎΡ€ ΠΊΠ°ΠΎ Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½Π΅ ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅, ΠΎΠ΄ΡΡ‚ΡƒΠΏΠ°Ρ˜Ρƒ ΠΎΠ΄ СкспСримСнталних ΠΎΠ΄ мањС ΠΎΠ΄ 1% Π΄ΠΎ вишС ΠΎΠ΄ 20%. ΠΠ°Ρ˜Π²Π΅Ρ›Π° ΠΎΠ΄ΡΡ‚ΡƒΠΏΠ°ΡšΠ° су ΡƒΠΎΡ‡Π΅Π½Π° ΠΊΠΎΠ΄ матрикса Π²Π΅Ρ›Π΅ густинС ΠΈ Ρ‚ΠΎ Π½Π° ΠΊΡ€Π°Ρ˜Π΅Π²ΠΈΠΌΠ° опсСга испитиваних Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π°. ΠžΡΡ‚Π°Π»ΠΈ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ сС Π½Π°Π»Π°Π·Π΅ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΌΠ΅Ρ€Π½Π΅ нСсигурности. Ефикасности су ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°Π½Π΅ ΠΈ ΠœΠΎΠ½Ρ‚Π΅ ΠšΠ°Ρ€Π»ΠΎ ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΎΠΌ ΠΏΠΎΠΌΠΎΡ›Ρƒ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π° ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ°. Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ добијСни ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ програмског ΠΏΠ°ΠΊΠ΅Ρ‚Π° GEANT4 ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Ρƒ ΠΎΠ΄ΡΡ‚ΡƒΠΏΠ°ΡšΠ΅ ΠΎΠ΄ СкспСримСнталних врСдности која су Ρ€Π΅Π΄Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ ΠΏΡ€ΠΎΡ†Π΅Π½Π°Ρ‚Π° ΠΈ Ρ‚Π° ΠΎΠ΄ΡΡ‚ΡƒΠΏΠ°ΡšΠ° су послСдица Π΄Π΅Ρ„ΠΈΠ½ΠΈΡΠ°ΡšΠ° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π΅ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π°. Π‘ΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΎΠΌ PHOTON јС Π΄Π°Π»Π° Π·Π°Π΄ΠΎΠ²ΠΎΡ™Π°Π²Π°Ρ˜ΡƒΡ›Π΅ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π΅ са ΠΎΠ΄ΡΡ‚ΡƒΠΏΠ°ΡšΠΈΠΌΠ° која сС ΠΊΡ€Π΅Ρ›Ρƒ ΠΎΠ΄ мањС ΠΎΠ΄ 1% Π΄ΠΎ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ½ΠΎ 20% Ρƒ односу Π½Π° СкспСримСнталнС Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π΅, Π°Π»ΠΈ ΡƒΠ· ΠΈΠ·ΠΎΡΡ‚Π°Π²Ρ™Π°ΡšΠ΅ Π½Π°Ρ˜Π½ΠΈΠΆΠΈΡ… Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π°, Π·Π° којС су ΠΎΠ΄ΡΡ‚ΡƒΠΏΠ°ΡšΠ° Π±ΠΈΠ»Π° Π½Π΅ΠΏΡ€ΠΈΡ…Π²Π°Ρ‚Ρ™ΠΈΠ²ΠΎ Π²Π΅Π»ΠΈΠΊΠ°. Π”ΠΎΠ΄Π°Ρ‚Π½ΠΈ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡ˜ΡƒΠΌ Π·Π° ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ Π±ΠΈΠ»Π° јС тачност која јС ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Π° ΠΌΠ΅Ρ€Π΅ΡšΠ΅ΠΌ ΡƒΠ·ΠΎΡ€Π°ΠΊΠ° ΠΈΠ· ΠΆΠΈΠ²ΠΎΡ‚Π½Π΅ срСдинС ΠΏΠΎΠ·Π½Π°Ρ‚Π΅ активности. Ови ΡƒΠ·ΠΎΡ€Ρ†ΠΈ су ΠΌΠ΅Ρ€Π΅Π½ΠΈ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΌΠ΅Ρ’ΡƒΠ»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΡ˜ΡΠΊΠΈΡ… ΠΈΠ½Ρ‚Π΅Ρ€ΠΊΠΎΠΌΠΏΠ°Ρ€Π°Ρ†ΠΈΡ˜Π° ΠΈΠ»ΠΈ су ΠΊΠ°ΠΎ сСкундарни Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π» Π½Π°Π±Π°Π²Ρ™Π΅Π½ΠΈ ΠΎΠ΄ сСртификованС Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΡ˜Π΅. Након ΠΌΠ΅Ρ€Π΅ΡšΠ°, активности Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π° Ρƒ ΡƒΠ·ΠΎΡ€Ρ†ΠΈΠΌΠ° добијСни су ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ Сфикасности Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ°. ΠŸΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ΠΌ ΠΎΠ²Π°ΠΊΠΎ Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… активности са Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½ΠΈΠΌ врСдностима Π΄Π°Ρ‚ΠΈΠΌ Π·Π° Ρ‚Π΅ ΡƒΠ·ΠΎΡ€ΠΊΠ΅, ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½ΠΎ јС ΠΎΠ±Ρ˜Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ свих ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈ установљСна ΡšΠΈΡ…ΠΎΠ²Π° Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ†ΠΈΡ˜Π° ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΠΌΠ°. TΠ°ΠΊΠΎΡ’Π΅, ΡƒΡ‚Π²Ρ€Ρ’Π΅Π½Π΅ су Π³Ρ€Π°Π½ΠΈΡ†Π΅ примСнљивости Π°Π½Π°Π»ΠΈΡ‚ΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ програмског ΠΏΠ°ΠΊΠ΅Ρ‚Π° PHOTON. Π”Π°Ρ‚Π΅ су ΠΈ ΠΏΡ€Π΅ΠΏΠΎΡ€ΡƒΠΊΠ΅ Ρƒ Π²Π΅Π·ΠΈ са комбиновањСм Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… приступа Π·Π° Π±ΡƒΠ΄ΡƒΡ›Π΅ ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅. Π£ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ ΠΏΡ€Π²ΠΈ ΠΏΡƒΡ‚ јС ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½ΠΎ вишС ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΡ˜Π΅Π»Π½ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π° ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Ρƒ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° Π·Π° ΠΌΠ΅Ρ€Π΅ΡšΠ΅ ΡƒΠ·ΠΎΡ€Π°ΠΊΠ° ΠΈΠ· ΠΆΠΈΠ²ΠΎΡ‚Π½Π΅ срСдинС Ρƒ Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΈΡ‡Π½ΠΎΡ˜ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΠΈ.The quality of the gamma spectrometry measurements is in general directly dependent on determining of the efficiency for the specific measurement geometry and measured sample characteristics. Due to the fact that measured samples can be very versatile in terms of geometry and chemical composition, the efficiency calibration is not readily available. That is when the need for developing different efficiency calibration methods and specific reference materials becomes obvious. Methods of efficiency calibration may consist of measurement of certified sources and secondary reference materials, determination of the parameters needed for efficiency calculation or simulation of the detector system response. Besides, the measurement in contact geometry, such is the case in measurement of environmental samples, implies the perturbation of the spectrum via coincidence summing effect, which leads to incorrect results of the measurement. Several methods for efficiency calibration of the measurement system are presented and utilized in this thesis. These are: - Experimental method, which implies the measurement of the secondary reference materials that are similar to the realistic samples in terms of geometry and composition. This method produces high accuracy results but at the same time requires long time for production of the secondary reference materials and long measurement time. All this can be the source of large measurement uncertainty. -Analytical method, which implies the existence of analytical dependence between the efficiency and geometrical characteristics of the measured sample and detector. This method is approximate, due to the fact that the integrals describing the efficiency dependence for cylindrical geometry are very complex and their solution is only possible by using a numerical integration. The approximations introduced in the calculation contribute to the uncertainty of the results, but can be acceptable in case of environmental samples. -Semi empirical method (represented in this thesis by EFFTRAN – efficiency transfer software) utilizes the dependence of the efficiency on the solid angle between the sample and detector and calculates the transfer of the efficiency from the reference calibration curve and coincidence summing corrections, accordingly. -Monte Carlo method (represented in this thesis by software package GEANT4 and PHOTON) utilizes Monte Carlo simulation of the detector spectral response based on known processes that lead to photon energy deposition in the medium and random number generation. Each of mentioned methods is applied for efficiency calibration of the HPGe detectors readily used in the Laboratory for Radiation and Environment Protection of the Institute for Nuclear Sciences Vinča. As the result, detector efficiencies and associated uncertainties are obtained. Since the measurement of the secondary reference materials is considered to produce the most accurate results, efficiencies obtained using other methods are compared to the experimental results in order to establish the accordance of the results within the uncertainty limits. The comparison determined that the efficiencies obtained using analytical method differ from the experimental results within the range of 1 to 14%, for the 3 measurement geometries that were analyzed and that are most frequently in use for environmental samples measurement. Results obtained by the efficiency transfer, using point source calibration as the reference, differ from the experimental results that ranges from less than 1% to more than 20%. The largest discrepancies are for high density matrices and at the edges of the investigated energy span. Other results obtained by this method are within the measurement uncertainty limits. Efficiency calibration by Monte Carlo simulation was performed using two different software. Results obtained by using GEANT4 software package show discrepancies from the experimental results that are of order of magnitude of several percent, which is the consequence of detector geometry definition. Simulation performed by PHOTON software produced satisfactory results with the discrepancies that ranged from less than 1% up to 20%, with the remark that the lowest energies were omitted due to unacceptably large discrepancy. Additional criterion for comparison of different efficiency calibration methods was testing of the accuracy by measurement of the realistic environmental samples. These samples were measured within different interlaboratory intercomparisons, or were acquired from certified laboratory as a secondary reference material. After measurement, the radionuclide activities in the samples were calculated using efficiencies obtained by different methods. By comparing the results with the activity target values provided by the intercomparison organizer, an objective accuracy comparison was performed and the equivalence of the results was determined. Also, the limits of the aplicability of anaytical method and PHOTON simulation were established. Recommendations regarding future efficiency calibrations are stated. This thesis applies, for the first time, several principielly different approaches to efficiency calibration of the HPGe detectors for environmental samples measurement in cylindrical geometry

    Interlaboratory comparison material homogeneity testing

    Get PDF
    The homogeneity of fertilizer samples for interlaboratory gamma-ray spectrometry comparison was tested by determination of the total. count rate and the count rates for two U-238. lines, one K-40 line and one common U-235 and Ra-226 line. Homogeneity testing was accomplished by determination of the minimum, maximum, mean and standard deviation for each parameter and comparison of their standard deviations with predefined tolerances, by Cochrans test, and by a one-way ANOVA. The standard deviations were all less than these tolerances. All samples passed Cochrans test and the one-way ANOVA test for homogeneity

    Limitations of the generalized coupled two-level model during the multiphoton absorption in different gas mixtures

    Get PDF
    Generalized coupled two-level model is applied in different gas mixtures and investigated for high fluence regime. Functional dependences of mean number of absorbed photons per molecule LT n GT (total) on buffer-gas pressure (P-buff) are presented, used to confirm or predict some possible physical and chemical processes, like enhanced absorption and/or dissociation. Limitations of proposed models are analyzed depending on both gas pressure and laser fluence. Results are compared with other previously obtained by the same experimental technique, but for different absorbing molecule.International School and Conference on Optics and Optical Materials, Sep 03-07, 2007, Belgrade, Serbi

    Ground Level Air Beryllium-7 and Ozone in Belgrade

    Get PDF
    Three sets of data covering the 2004-2007 period are examined: two beryllium-7 series and ozone measured in ground level air. The measuring sites are at three different locations in Belgrade, Serbia. The temporal evolution of beryllium-7 and ozone is presented, as well as their mutual correlations. Beryllium-7 data for Belgrade agree well with the results for other locations in the region. The correlation between two beryllium-7 data sets is 0.57. The results for ozone indicate that Belgrade is not a common continental site, as the maximum in ozone distribution is reached in springtime. The overall correlation between beryllium-7 and ozone is good, but varies over different seasons. A large correlation (0.67) is noted between beryllium-7 measured at the site in Vinca, Serbia, and the monthly maximum ozone in autumn. An analysis which assumes the transport of air masses from the stratosphere, along which the only process changing the air mass composition is radioactive decay of beryllium-7, does not conclusively confirm the high correlation between beryllium-7 and ozone in autumn

    Calculation of the highly excited SF6 vibrational state distributions and dissociation yields in different gas mixtures

    Get PDF
    Influence of the buffer gas on the multiphoton absorption and dissociation in different mixtures was investigated. Simple method based on the empirical and theoretical vibrational energy distribution is applied for high fluence regime. Collisional effects of buffer gas (Ar) are introduced to enhance the absorption and relaxation of irradiated molecules (SF6 and C2H4). Functional dependences of mean number of absorbed photons per molecule ( LT n GT (total)) on the Molecular excitation level are presented, enabling us to confirm or predict the level of excitation, number of molecules directly involved in the absorption process and dissociated during the laser pulse.International School and Conference on Optics and Optical Materials, Sep 03-07, 2007, Belgrade, Serbi

    Seasonal variations of naturally occurring radionuclides and 137cs in the leaves of deciduous tree species at sites of background radioactivity levels

    Get PDF
    Activity concentration of natural radionuclides and 137Cs were studied in leaves of the deciduous trees. In the spring and autumn season, leaves were collected in the area of normal background radiation levels represented by city parks in a multi-year period (2002-2012). Measurements by means of gamma-ray spectrometry showed 226Ra and 210Pb seasonal accumulation in leaves, while 238U and 235U could be detected only in autumn. Difference between seasons was not found significant for 40K and 137Cs. The study of radionuclides transfer factors was conducted by analyzing its relationships with basic soil properties at the beginning and the end of the vegetation period. Β© 2019, Editura Academiei Romane. All rights reserved

    Seasonal variations of naturally occurring radionuclides and 137cs in the leaves of deciduous tree species at sites of background radioactivity levels

    Get PDF
    Activity concentration of natural radionuclides and 137Cs were studied in leaves of the deciduous trees. In the spring and autumn season, leaves were collected in the area of normal background radiation levels represented by city parks in a multi-year period (2002-2012). Measurements by means of gamma-ray spectrometry showed 226Ra and 210Pb seasonal accumulation in leaves, while 238U and 235U could be detected only in autumn. Difference between seasons was not found significant for 40K and 137Cs. The study of radionuclides transfer factors was conducted by analyzing its relationships with basic soil properties at the beginning and the end of the vegetation period. Β© 2019, Editura Academiei Romane. All rights reserved

    A Multi-Year Study of Radioactivity in Surface Air and Its Relation to Climate Variables in Belgrade, Serbia

    Get PDF
    Activities of Be-7 and Pb-210 were monitored in surface air in Belgrade, Serbia, from 2004 to 2012. The measurements were taken from two locations, in an open field of a city suburb and in the central city area. The activities were determined on HPGe detectors by standard gamma spectrometry. The Be-7 activity shows a pronounced seasonal pattern, with the maximum in spring-summer and minimum in winter, while the Pb-210 activity exhibits two maxima, in autumn and late winter. The mean monthly concentrations measured at both sites are below 9 mBq/m(3) and 1.3 mBq/m(3) for Be-7 and Pb-210, respectively. The obtained correlation of the Be-7 activity with the number of sun-spots is not statistically significant. Relations of the radionuclides activities with climate variables (precipitation, temperature, relative humidity, cloud cover, sunshine hours, and atmospheric pressure) are also investigated, but the only significant correlations are found for the Be-7 activity with temperature and sunshine hours, and the Pb-210 activity with atmospheric pressure. The maximum Be-7 and Pb-210 activities corresponding to binned total monthly precipitation data imply different modes of the radionuclide scavenging from the atmosphere. During dry periods, accumulation of the radionuclides in the atmosphere leads to their increased activities, but no correlation was found between the activities and the number of consecutive dry days

    Transfer Factors for ,,The Soil-Cereals System in the Region of Pcinja, Serbia

    Get PDF
    The aim of the paper was to estimate the values of transfer factors for natural radionuclides (K-40, Ra-226, Th-232, U-235, and U-238) and Cs-137 from soil to plants (cereals: wheat, corn and barley) as important parameters for the agricultures in the selection of the location and the sort of cereals to be planted on. The results presented in this paper refer to the ,,soil -cereals system in the region of Pcinja, Serbia. Total of 9 samples of soil and 7 samples of cereals were measured in the Department of Radiation and Environmental Protection, Irnica Institute of Nuclear Sciences, using three high -purity germanium detectors for gamma spectrometry measurements. In all the samples, transfer factors for Ra-226 are significantly lower than for K-40, but they are all in good agreement with the literature data. On the three investigated locations, the calculated values of transfer factors for K-40 were in the range of 0.144 to 0.392, while in the case of Ra-226, the transfer factors ranged from 0.008 to 0.074. Only one value (0.051) was obtained for transfer factor of Th-232. Specific activities of Cs-137, as well as uranium isotopes, in all the investigated cereal samples, were below minimal detectable activity concentrations. Also, the absorbed dose rate and the annual absorbed dose from the natural radionuclides in the soil, were calculated. The absorbed dose rate ranged from 49-86 nSv/h, while the annual absorbed dose ranged from 0.061-0.105 mSv. The measurements presented in this manuscript are the first to be conducted in the region of Pcinja, thus providing the results that can be used as a baseline for future measurements and monitoring

    Correlation Between Beryllium-7 in Atmospheric Deposit and Ground Level Air in Serbia for 2014 Year

    Get PDF
    Activity density of beryllium-7 in atmospheric deposit and in ground level air at five monitoring stations (MS Nis, Vranje, Zajecar, Zlatibor, Palic) in Serbia were determined during the period January-December 2014. Activity of cosmogenic radionuclide beryllium-7 was determined on HPG detectors (Canberra, relative efficienty 20%.) by gama spectrometry method. Activity density of beryllium-7 in aerosols were in range 0.5 - 9.8 mBq/m(3) and in deposits were in range 1.8 - 233 Bg/m(2). Based on the obtained results correlation coefficient between aerosols and deposits was calculated and its value ranged from 0.15 to 0.59.3rd International Conference on Radiation and Applications in Various Fields of Research (RAD), Jun 08-12, 2015, Budva, Montenegr
    • …
    corecore